A Fresh Look at the Bayesian Bounds of the Weiss-Weinstein Family

Minimal bounds on the mean square error (MSE) are generally used in order to predict the best achievable performance of an estimator for a given observation model. In this paper, we are interested in the Bayesian bound of the Weiss-Weinstein family. Among this family, we have Bayesian Cramer-Rao bound, the Bobrovsky-MayerWolf-Zakai bound, the Bayesian Bhattacharyya bound, the Bobrovsky-Zakai bound, the Reuven-Messer bound, and the Weiss-Weinstein bound. We present a unification of all these minimal bounds based on a rewriting of the minimum mean square error estimator (MMSEE) and on a constrained optimization problem. With this approach, we obtain a useful theoretical framework to derive new Bayesian bounds. For that purpose, we propose two bounds. First, we propose a generalization of the Bayesian Bhattacharyya bound extending the works of Bobrovsky, Mayer-Wolf, and Zakai. Second, we propose a bound based on the Bayesian Bhattacharyya bound and on the Reuven-Messer bound, representing a generalization of these bounds. The proposed bound is the Bayesian extension of the deterministic Abel bound and is found to be tighter than the Bayesian Bhattacharyya bound, the Reuven-Messer bound, the Bobrovsky-Zakai bound, and the Bayesian Cramer-Rao bound. We propose some closed-form expressions of these bounds for a general Gaussian observation model with parameterized mean. In order to illustrate our results, we present simulation results in the context of a spectral analysis problem.

[1]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[2]  Ben-Zion Bobrovsky,et al.  A lower bound on the estimation error for certain diffusion processes , 1976, IEEE Trans. Inf. Theory.

[3]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[4]  Philippe Forster,et al.  A Useful Form of the Abel Bound and Its Application to Estimator Threshold Prediction , 2007, IEEE Transactions on Signal Processing.

[5]  Athanassios Manikas,et al.  Differential Geometry In Array Processing , 2004 .

[6]  Wen Xu,et al.  Bayesian bounds for matched-field parameter estimation , 2004, IEEE Transactions on Signal Processing.

[7]  P. Ciblat,et al.  ZIV-ZAKAI bound for harmonic retrieval in multiplicative and additive gaussian noise , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[8]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise , 1992 .

[9]  Hagit Messer,et al.  The use of the Barankin bound for determining the threshold SNR in estimating the bearing of a source in the presence of another , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[10]  M. Fréchet Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .

[11]  Philippe Forster,et al.  Harmonic retrieval in the presence of non-circular Gaussian multiplicative noise: performance bounds , 2005, Signal Process..

[12]  Luc Knockaert,et al.  The Barankin bound and threshold behavior in frequency estimation , 1997, IEEE Trans. Signal Process..

[13]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[14]  João M. F. Xavier,et al.  Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[15]  Jean Pierre Delmas,et al.  Stochastic Crame/spl acute/r-Rao bound for noncircular signals with application to DOA estimation , 2004, IEEE Transactions on Signal Processing.

[16]  S.T. Smith Statistical Resolution Limits and the Complexified , 2005 .

[17]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[18]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[19]  D. Dugué,et al.  Application des propriétés de la limite au sens du calcul des probabilités à l'étude de diverses questions d'estimation , 1937 .

[20]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[21]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[22]  P. Larzabal,et al.  A new derivation of the bayesian bounds for parameter estimation , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[23]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[24]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[25]  Ehud Weinstein Relations between Belini-Tartara, Chazan-Zakai-Ziv, and Wax-Ziv lower bounds , 1988, IEEE Trans. Inf. Theory.

[26]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[27]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[28]  Jean-Yves Tourneret,et al.  Barankin lower bound for change-points in independent sequences , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[29]  Eric Chaumette,et al.  A Direct Method to Generate Approximations of the Barankin Bound , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[30]  Jacob Ziv,et al.  Improved Lower Bounds on Signal Parameter Estimation , 1975, IEEE Trans. Inf. Theory.

[31]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[32]  Jean Pierre Delmas,et al.  Cramer-Rao bounds of DOA estimates for BPSK and QPSK Modulated signals , 2006, IEEE Transactions on Signal Processing.

[33]  G. Darmois,et al.  Sur les limites de la dispersion de certaines estimations , 1945 .

[34]  Kristine L. Bell,et al.  Explicit Ziv-Zakai lower bound for bearing estimation , 1996, IEEE Trans. Signal Process..

[35]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[36]  P. Larzabal,et al.  On the influence of a detection step on lower bounds for deterministic parameter estimation , 2005, IEEE Transactions on Signal Processing.

[37]  M. Zakai,et al.  Some Classes of Global Cramer-Rao Bounds , 1987 .

[38]  Alexandre Renaux Weiss–Weinstein Bound for Data-Aided Carrier Estimation , 2007, IEEE Signal Processing Letters.

[39]  Sandro Bellini,et al.  Bounds on Error in Signal Parameter Estimation , 1974, IEEE Trans. Commun..

[40]  Irwin Guttman,et al.  Bhattacharyya Bounds without Regularity Assumptions , 1952 .

[41]  S.T. Smith,et al.  Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.

[42]  Philippe Forster,et al.  Harmonic retrieval in non-circular complex-valued multiplicative noise: Barankin bound , 2004, 2004 12th European Signal Processing Conference.

[43]  Wen Xu,et al.  Performance Bounds on Matched-Field Methods for Source Localization and Estimation of Ocean Environmental Parameters , 2001 .

[44]  H. V. Trees,et al.  Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .

[45]  Ehud Weinstein,et al.  A lower bound on the mean-square error in random parameter estimation , 1985, IEEE Trans. Inf. Theory.

[46]  J. Kiefer On Minimum Variance Estimators , 1952 .

[47]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[48]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[49]  S. T. Smith Statistical resolution limits and the complexified Crame/spl acute/r-Rao bound , 2005, IEEE Transactions on Signal Processing.

[50]  Jeffrey L. Krolik,et al.  Barankin bound for source localization in shallow water , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[51]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[52]  Wen Xu,et al.  A bound on mean-square estimation error with background parameter mismatch , 2004, IEEE Transactions on Information Theory.

[53]  Louis L. Scharf,et al.  Geometry of the Cramer-Rao bound , 1993, Signal Process..

[54]  Thomas L. Marzetta Computing the Barankin bound, by solving an unconstrained quadratic optimization problem , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[55]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[56]  A. Gardner Methods of Statistics , 1941 .

[57]  Pascal Larzabal,et al.  From Chapman-Robbins bound towards Barankin bound in threshold behaviour prediction , 2004 .

[58]  Pascal Larzabal,et al.  SNR threshold indicator in data-aided frequency synchronization , 2004, IEEE Signal Processing Letters.

[59]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[60]  Alexandre Renaux Contribution à l'analyse des performances d'estimation en traitement statistique du signal , 2006 .

[61]  Zhiping Lin,et al.  The Cramer-Rao lower bound for bilinear systems , 2006, IEEE Transactions on Signal Processing.

[62]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[63]  Imam Samil Yetik,et al.  Performance bounds on image registration , 2005, IEEE Transactions on Signal Processing.

[64]  Philippe Forster,et al.  The Bayesian ABEL Bound on the Mean Square Error , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[65]  Hagit Messer,et al.  On the effect of nuisance parameters on the threshold SNR value of the Barankin bound , 1999, IEEE Trans. Signal Process..

[66]  João M. F. Xavier,et al.  The Riemannian geometry of certain parameter estimation problems with singular Fisher information matrices , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[67]  Kristine L. Bell,et al.  Ziv-Zakai lower bounds in bearing estimation , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.