Programming nanoparticle valence bonds with single-stranded DNA encoders

Nature has evolved strategies to encode information within a single biopolymer to program biomolecular interactions with characteristic stoichiometry, orthogonality and reconfigurability. Nevertheless, synthetic approaches for programming molecular reactions or assembly generally rely on the use of multiple polymer chains (for example, patchy particles). Here we demonstrate a method for patterning colloidal gold nanoparticles with valence bond analogues using single-stranded DNA encoders containing polyadenine (polyA). By programming the order, length and sequence of each encoder with alternating polyA/non-polyA domains, we synthesize programmable atom-like nanoparticles (PANs) with n -valence that can be used to assemble a spectrum of low-coordination colloidal molecules with different composition, size, chirality and linearity. Moreover, by exploiting the reconfigurability of PANs, we demonstrate dynamic colloidal bond-breaking and bond-formation reactions, structural rearrangement and even the implementation of Boolean logic operations. This approach may be useful for generating responsive functional materials for distinct technological applications. Single-stranded DNA encoders containing polyadenine domains endow colloidal gold nanoparticles with programmable bond valence, orthogonality and reconfigurability, thus achieving post-synthetic control over colloidal structures.

[1]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[2]  F. Eiserling,et al.  Quantized viral DNA packaging revealed by rotating gel electrophoresis. , 1990, Virology.

[3]  Andrey V. Dobrynin,et al.  Cascade of Transitions of Polyelectrolytes in Poor Solvents , 1996 .

[4]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[5]  A J Koster,et al.  Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Ciccotti,et al.  Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems , 2001 .

[7]  A. Credi,et al.  Molecular Devices and Machines , 2007, New Frontiers in Nanochemistry.

[8]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[9]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[10]  Chad A Mirkin,et al.  Asymmetric functionalization of gold nanoparticles with oligonucleotides. , 2006, Journal of the American Chemical Society.

[11]  C. Mirkin,et al.  Asymmetric Functionalization of Nanoparticles Based on Thermally Addressable DNA Interconnects , 2006 .

[12]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[13]  D. Rhodes,et al.  Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure , 2008, Proceedings of the National Academy of Sciences.

[14]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[15]  Detlef Snakenborg,et al.  BioXTAS RAW, a software program for high‐throughput automated small‐angle X‐ray scattering data reduction and preliminary analysis , 2009 .

[16]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[17]  Jian Zhang,et al.  DNA-nanoparticle superlattices formed from anisotropic building blocks. , 2010, Nature materials.

[18]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[19]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[20]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[21]  Kang Sun,et al.  Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. , 2011, Angewandte Chemie.

[22]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[23]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[24]  Yu Wang,et al.  Colloids with valence and specific directional bonding , 2012, Nature.

[25]  David A. Weitz,et al.  Surface roughness directed self-assembly of patchy particles into colloidal micelles , 2012, Proceedings of the National Academy of Sciences.

[26]  Chunhai Fan,et al.  Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. , 2012, Journal of the American Chemical Society.

[27]  Chad A Mirkin,et al.  A General Approach to DNA- Programmable Atom Equivalents* , 2020, Spherical Nucleic Acids.

[28]  Matthew N. O’Brien,et al.  Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new "table of elements". , 2013, Angewandte Chemie.

[29]  N. Seeman,et al.  DNA Patchy Particles , 2013, Advanced materials.

[30]  Yi Lu,et al.  Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. , 2013, Journal of the American Chemical Society.

[31]  F. Schacher,et al.  Guided hierarchical co-assembly of soft patchy nanoparticles , 2013, Nature.

[32]  R. K. Mishra,et al.  Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[33]  T. Aida,et al.  Structure and shape effects of molecular glue on supramolecular tubulin assemblies. , 2014, ACS nano.

[34]  P. Dommersnes,et al.  Electroformation of Janus and patchy capsules , 2014, Nature Communications.

[35]  Chad A. Mirkin,et al.  DNA-mediated nanoparticle crystallization into Wulff polyhedra , 2013, Nature.

[36]  X. Qu,et al.  DNA‐mediated Construction of Hollow Upconversion Nanoparticles for Protein Harvesting and Near‐Infrared Light Triggered Release , 2014, Advanced materials.

[37]  Kiyoshi Kanisawa,et al.  Quantum dots with single-atom precision. , 2014, Nature nanotechnology.

[38]  H. Pei,et al.  Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield , 2015 .

[39]  Suchetan Pal,et al.  Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. , 2015, Nature materials.

[40]  C. Mao,et al.  Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. , 2015, Journal of the American Chemical Society.

[41]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[42]  J. Chao,et al.  Coordination-mediated programmable assembly of unmodified oligonucleotides on plasmonic silver nanoparticles. , 2015, ACS applied materials & interfaces.

[43]  J. Šponer,et al.  Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. , 2015, Journal of chemical theory and computation.

[44]  P. Bolhuis,et al.  Rotational diffusion affects the dynamical self-assembly pathways of patchy particles , 2015, Proceedings of the National Academy of Sciences.

[45]  Baoquan Ding,et al.  Plasmonic Toroidal Metamolecules Assembled by DNA Origami. , 2016, Journal of the American Chemical Society.

[46]  H. Sleiman,et al.  Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles , 2016, Nature Chemistry.

[47]  Oleg Gang,et al.  Self-organized architectures from assorted DNA-framed nanoparticles. , 2016, Nature chemistry.

[48]  Jie Chao,et al.  Transfer of Two-Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNA-Origami-Based Nanoimprinting Lithography. , 2016, Angewandte Chemie.

[49]  Egor M. Larin,et al.  Surface patterning of nanoparticles with polymer patches , 2016, Nature.

[50]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[51]  Chad A. Mirkin,et al.  Transmutable nanoparticles with reconfigurable surface ligands , 2016, Science.

[52]  Huilin Li,et al.  Diamond family of nanoparticle superlattices , 2016, Science.

[53]  I. Willner,et al.  Chiroplasmonic DNA-based nanostructures , 2017 .

[54]  N. Seeman,et al.  Self-assembled three-dimensional chiral colloidal architecture , 2017, Science.

[55]  Harald Giessen,et al.  Chiral plasmonics , 2017, Science Advances.

[56]  Ben L Feringa,et al.  The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[57]  W. Hughes,et al.  Multi-Arm Junctions for Dynamic DNA Nanotechnology. , 2017, Journal of the American Chemical Society.

[58]  G. Yi,et al.  Patchy particles made by colloidal fusion , 2017, Nature.

[59]  Xiaolei Zuo,et al.  Valence-Engineering of Quantum Dots Using Programmable DNA Scaffolds. , 2017, Angewandte Chemie.

[60]  Yi Lu,et al.  Bottom-Up Strategy To Prepare Nanoparticles with a Single DNA Strand. , 2017, Journal of the American Chemical Society.

[61]  Tim Liedl,et al.  Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. , 2018, Nano letters.

[62]  T. Fukushima,et al.  Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. , 2018, Nature chemistry.