Natural deduction for bi-intuitionistic logic

Abstract We present a multiple-assumption multiple-conclusion system for bi-intuitionistic logic. Derivations in the systems are graphs whose edges are labelled by formulas and whose nodes are labelled by rules. We show how to embed both the standard intuitionistic and dual-intuitionistic natural deduction systems into the proposed system. Soundness and completeness are established using translations with more traditional sequent calculi for bi-intuitionistic logic.

[1]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[2]  Cecylia Rauszer,et al.  A formalization of the propositional calculus of H-B logic , 1974 .

[3]  Peter Milne,et al.  Classical harmony: Rules of inference and the meaning of the logical constants , 1994, Synthese.

[4]  Rajeev Goré,et al.  Cut-elimination and proof-search for bi-intuitionistic logic using nested sequents , 2008, Advances in Modal Logic.

[5]  D. Prawitz Ideas and Results in Proof Theory , 1971 .

[6]  Greg Restall,et al.  Normal Proofs, Cut Free Derivations and Structural Rules , 2014, Studia Logica.

[7]  A. M. Ungar Normalization, Cut-Elimination, and the Theory of Proofs , 1992 .

[8]  Frank Wolter,et al.  On Logics with Coimplication , 1998, J. Philos. Log..

[9]  D. J. Shoesmith,et al.  Multiple-Conclusion Logic , 1978 .

[10]  Heinrich Wansing,et al.  Falsification, natural deduction and bi-intuitionistic logic , 2016, J. Log. Comput..

[11]  Heinrich Wansing,et al.  A more general general proof theory , 2017, J. Appl. Log..

[12]  Igor Urbas,et al.  Dual-Intuitionistic Logic , 1996, Notre Dame J. Formal Log..

[13]  Valeria de Paiva,et al.  Intuitionistic N-Graphs , 2014, Log. J. IGPL.

[14]  J. C. C. McKinsey,et al.  Proof of the independence of the primitive symbols of Heyting's calculus of propositions , 1939, Journal of Symbolic Logic.

[15]  Rajeev Goré,et al.  A Cut-Free Sequent Calculus for Bi-intuitionistic Logic , 2007, TABLEAUX.

[16]  Tristan Crolard,et al.  Subtractive logic , 2001, Theor. Comput. Sci..

[17]  C. Rauszer Semi-Boolean algebras and their applications to intuitionistic logic with dual operations , 1974 .

[18]  Heinrich Wansing,et al.  Constructive negation, implication, and co-implication , 2008, J. Appl. Non Class. Logics.

[19]  Nicolas D. Goodman,et al.  The Logic of Contradiction , 1981, Math. Log. Q..

[20]  Tristan Crolard A Formulae-as-Types Interpretation of Subtractive Logic , 2004, J. Log. Comput..

[21]  Luís Pinto,et al.  Relating Sequent Calculi for Bi-intuitionistic Propositional Logic , 2010, CL&C.

[22]  L. Humberstone Contrariety and Subcontrariety: The Anatomy of Negation (with Special Reference to an Example of J.‐Y. Béziau) , 2008 .

[23]  Rajeev Goré,et al.  Dual Intuitionistic Logic Revisited , 2000, TABLEAUX.

[24]  C. Rauszer Applications of Kripke models to Heyting-Brouwer logic , 1977 .

[25]  Luca Tranchini,et al.  Natural Deduction for Dual-intuitionistic Logic , 2012, Stud Logica.

[26]  Luís Pinto,et al.  Proof Search and Counter-Model Construction for Bi-intuitionistic Propositional Logic with Labelled Sequents , 2009, TABLEAUX.

[27]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..