Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy

Parasites and other symbionts are crucial components of ecosystems, regulating host populations and supporting food webs. However, most symbiont systems, especially those involving commensals and mutualists, are relatively poorly understood. In this study, we have investigated the nature of the symbiotic relationship between birds and their most abundant and diverse ectosymbionts: the vane‐dwelling feather mites. For this purpose, we studied the diet of feather mites using two complementary methods. First, we used light microscopy to examine the gut contents of 1,300 individual feather mites representing 100 mite genera (18 families) from 190 bird species belonging to 72 families and 19 orders. Second, we used high‐throughput sequencing (HTS) and DNA metabarcoding to determine gut contents from 1,833 individual mites of 18 species inhabiting 18 bird species. Results showed fungi and potentially bacteria as the main food resources for feather mites (apart from potential bird uropygial gland oil). Diatoms and plant matter appeared as rare food resources for feather mites. Importantly, we did not find any evidence of feather mites feeding upon bird resources (e.g., blood, skin) other than potentially uropygial gland oil. In addition, we found a high prevalence of both keratinophilic and pathogenic fungal taxa in the feather mite species examined. Altogether, our results shed light on the long‐standing question of the nature of the relationship between birds and their vane‐dwelling feather mites, supporting previous evidence for a commensalistic–mutualistic role of feather mites, which are revealed as likely fungivore–microbivore–detritivore symbionts of bird feathers.

[1]  P. Klimov,et al.  Cophylogenetic assessment of New World warblers (Parulidae) and their symbiotic feather mites (Proctophyllodidae) , 2018 .

[2]  R. Jovani,et al.  Host specificity, infrequent major host switching and the diversification of highly host-specific symbionts: The case of vane-dwelling feather mites , 2018 .

[3]  A. Møller,et al.  Fungi, feather damage, and risk of predation , 2017, Ecology and evolution.

[4]  G. Moreno-Rueda Preen oil and bird fitness: a critical review of the evidence , 2017, Biological reviews of the Cambridge Philosophical Society.

[5]  P. Klimov,et al.  Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds , 2017, Evolution; international journal of organic evolution.

[6]  R. Jovani,et al.  Cophylogenetic analyses reveal extensive host-shift speciation in a highly specialized and host-specific symbiont system. , 2017, Molecular phylogenetics and evolution.

[7]  Rob Knight,et al.  Dramatic Differences in Gut Bacterial Densities Correlate with Diet and Habitat in Rainforest Ants. , 2017, Integrative and comparative biology.

[8]  Eric R. Dougherty,et al.  Parasite biodiversity faces extinction and redistribution in a changing climate , 2017, Science Advances.

[9]  John J. Wiens,et al.  Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life , 2017, The Quarterly Review of Biology.

[10]  R. Jovani,et al.  Vertical transmission in feather mites: insights into its adaptive value , 2017 .

[11]  R. Jovani,et al.  Opening the Doors of Parasitology Journals to Other Symbionts. , 2017, Trends in parasitology.

[12]  R. Jovani,et al.  PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results. , 2017, Genome.

[13]  D. Janzen,et al.  Caterpillars lack a resident gut microbiome , 2017, Proceedings of the National Academy of Sciences.

[14]  Marie‐Hélène Brice,et al.  Does urbanization lead to taxonomic and functional homogenization in riparian forests? , 2017 .

[15]  R. Jovani,et al.  Global associations between birds and vane-dwelling feather mites. , 2016, Ecology.

[16]  E. Burtt,et al.  Feather-degrading bacilli in the plumage of wild birds: Prevalence and relation to feather wear , 2016, The Auk.

[17]  M. Shapira Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. , 2016, Trends in ecology & evolution.

[18]  Vincent J. Denef,et al.  Seasonal Succession Leads to Habitat-Dependent Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria , 2016, Front. Microbiol..

[19]  J. Kopecký,et al.  Assessment of Bacterial Communities in Thirteen Species of Laboratory-Cultured Domestic Mites (Acari: Acaridida) , 2016, Journal of Economic Entomology.

[20]  Kevin P. Johnson,et al.  Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura) , 2016, Applied and Environmental Microbiology.

[21]  D. Clayton,et al.  Coevolution of Life on Hosts: Integrating Ecology and History , 2015 .

[22]  E. Elguero,et al.  Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis , 2015, PloS one.

[23]  A. Møller,et al.  Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: A primer. , 2015, Current zoology.

[24]  R. Jovani,et al.  Species mtDNA genetic diversity explained by infrapopulation size in a host‐symbiont system , 2015, Ecology and evolution.

[25]  Pieter C Dorrestein,et al.  Illuminating the dark matter in metabolomics , 2015, Proceedings of the National Academy of Sciences.

[26]  R. Jovani,et al.  DNA barcoding and minibarcoding as a powerful tool for feather mite studies , 2015, Molecular ecology resources.

[27]  I. de la Hera,et al.  Different space preferences and within-host competition promote niche partitioning between symbiotic feather mite species. , 2015, International journal for parasitology.

[28]  Tim Booth,et al.  PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform , 2015, Methods in ecology and evolution.

[29]  S. Morand,et al.  Symbiosis in an overlooked microcosm: a systematic review of the bacterial flora of mites , 2015, Parasitology.

[30]  D. Brooks,et al.  Evolution in action: climate change, biodiversity dynamics and emerging infectious disease , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  J. Kopecký,et al.  Carpoglyphus lactis (Acari: Astigmata) from various dried fruits differed in associated micro‐organisms , 2015, Journal of applied microbiology.

[32]  Anna Traveset,et al.  Mutualistic Interactions and Biological Invasions , 2014 .

[33]  A. Møller,et al.  Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds , 2014, PloS one.

[34]  Z. Vas,et al.  Co-extinct and critically co-endangered species of parasitic lice, and conservation-induced extinction: should lice be reintroduced to their hosts? , 2014, Oryx.

[35]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[36]  Bart Lievens,et al.  Comparison and Validation of Some ITS Primer Pairs Useful for Fungal Metabarcoding Studies , 2014, PloS one.

[37]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[38]  V. Lange,et al.  Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing , 2014, BMC Genomics.

[39]  Jürgen Sauter,et al.  Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing , 2014, BMC Genomics.

[40]  M. Novotny,et al.  Chemosignaling diversity in songbirds: chromatographic profiling of preen oil volatiles in different species. , 2013, Journal of chromatography. A.

[41]  Marti J. Anderson,et al.  PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? , 2013 .

[42]  Paul J. McMurdie,et al.  Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible , 2013, PLoS Comput. Biol..

[43]  R. Henrik Nilsson,et al.  Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data , 2013 .

[44]  N. Moran,et al.  The gut microbiota of insects - diversity in structure and function. , 2013, FEMS microbiology reviews.

[45]  Sarah L. Westcott,et al.  Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform , 2013, Applied and Environmental Microbiology.

[46]  P. Klimov,et al.  Is permanent parasitism reversible?--critical evidence from early evolution of house dust mites. , 2013, Systematic biology.

[47]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[48]  Elizabeth S. Andrews,et al.  Analyzing arthropods for the presence of bacteria. , 2013, Current protocols in microbiology.

[49]  W. Jetz,et al.  The global diversity of birds in space and time , 2012, Nature.

[50]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[51]  M. Martínez-Bueno,et al.  The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds , 2012, Journal of evolutionary biology.

[52]  A. Møller,et al.  Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study , 2012 .

[53]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[54]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[55]  K. Farrell,et al.  The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments , 2012, Oecologia.

[56]  J. Kopecký,et al.  Detection and Identification of Species-Specific Bacteria Associated with Synanthropic Mites , 2011, Microbial Ecology.

[57]  Rob Knight,et al.  UCHIME improves sensitivity and speed of chimera detection , 2011, Bioinform..

[58]  J. Hubert,et al.  Comparative analyses of proteolytic activities in seven species of synanthropic acaridid mites. , 2010, Archives of insect biochemistry and physiology.

[59]  Z. Barta,et al.  Seasonality in the uropygial gland size and feather mite abundance in house sparrows Passer domesticus: natural covariation and an experiment , 2010 .

[60]  Robert Poulin,et al.  Network analysis shining light on parasite ecology and diversity. , 2010, Trends in parasitology.

[61]  A. Newton,et al.  Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. , 2010, Trends in microbiology.

[62]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[63]  M. P. Valim,et al.  A systematic review of feather mites of the pterodectes generic complex (acari: Proctophyllodidae: Pterodectinae) with redescriptions of species described by vladimír cerný , 2010 .

[64]  Ting Gao,et al.  Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species , 2010, PloS one.

[65]  David J Van Horn,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[66]  P. Hebert,et al.  Probing Evolutionary Patterns in Neotropical Birds through DNA Barcodes , 2009, PloS one.

[67]  A. Gunderson Feather-Degrading Bacteria: A New Frontier in Avian and Host–Parasite Research? , 2008 .

[68]  A. Dobson,et al.  Homage to Linnaeus: How many parasites? How many hosts? , 2008, Proceedings of the National Academy of Sciences.

[69]  M. Ohkuma Symbioses of flagellates and prokaryotes in the gut of lower termites. , 2008, Trends in microbiology.

[70]  J. Hubert,et al.  Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source , 2008, Experimental and Applied Acarology.

[71]  M. Dabert,et al.  Glaucalges tytonis sp. n. (Analgoidea, Xolalgidae) from the barn owl Tyto alba (Strigiformes, Tytonidae): compiling morphology with DNA barcode data for taxon descriptions in mites (Acari) , 2008, Zootaxa.

[72]  W. Ludwig,et al.  SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB , 2007, Nucleic acids research.

[73]  M. Shimada,et al.  Obligate symbiont involved in pest status of host insect , 2007, Proceedings of the Royal Society B: Biological Sciences.

[74]  A. Dobson,et al.  Parasites dominate food web links. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Jovani,et al.  Parasite prevalence and sample size: misconceptions and solutions. , 2006, Trends in parasitology.

[76]  Marti J. Anderson,et al.  Distance‐Based Tests for Homogeneity of Multivariate Dispersions , 2006, Biometrics.

[77]  I. Côté,et al.  Mutualism or parasitism? The variable outcome of cleaning symbioses , 2005, Biology Letters.

[78]  F. Goller,et al.  Adaptive significance of avian beak morphology for ectoparasite control , 2005, Proceedings of the Royal Society B: Biological Sciences.

[79]  A. Kubátová,et al.  Astigmatid mite growth and fungi preference (Acari: Acaridida): Comparisons in laboratory experiments , 2004 .

[80]  H. Proctor Feather mites (Acari: Astigmata): ecology, behavior, and evolution. , 2003, Annual review of entomology.

[81]  S. Mironov,et al.  [Dynamics of infection of Fringilla coelebs chaffinch nestlings with feather mites (Acari: Analgoidea)]. , 2002, Parazitologiia.

[82]  R. Jovani,et al.  Are Hippoboscid Flies a Major Mode of Transmission of Feather Mites? , 2001, The Journal of parasitology.

[83]  R. Jovani,et al.  Feather mites (Astigmata) avoid moulting wing feathers of passerine birds , 2001, Animal Behaviour.

[84]  J. Tella,et al.  Feather mites on birds: costs of parasitism or conditional outcomes? , 2001 .

[85]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[86]  Serge Morand,et al.  The Diversity of Parasites , 2000, The Quarterly Review of Biology.

[87]  Owens,et al.  Mites and birds: diversity, parasitism and coevolution. , 2000, Trends in ecology & evolution.

[88]  Jerilyn A. Walker,et al.  Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). , 2000, BioTechniques.

[89]  D. Harper Feather mites, pectoral muscle condition, wing length and plumage coloration of passerines , 1999, Animal Behaviour.

[90]  S. V. Mironov,et al.  Origin and Evolution of Feather Mites (Astigmata) , 1999, Experimental & Applied Acarology.

[91]  Heather C. Proctor Gallilichus jonesi sp. n. (Acari: Ascouracaridae): A new species of feather mite from the quills of the Australian brush‐turkey (Aves: Megapodiidae) , 1999 .

[92]  J. Chaumont,et al.  Screening fungi for synthesis of keratinolytic enzymes , 1999 .

[93]  J. Tella,et al.  Feather mites on group-living Red-billed Choughs : a non-parasitic interaction ? , 1997 .

[94]  Matthias Leu,et al.  High Parasite Load in House Finches (Carpodacus mexicanus) is Correlated with Reduced Expression of a Sexually Selected Trait , 1997, The American Naturalist.

[95]  T. Hawkins,et al.  DNA purification and isolation using a solid-phase. , 1994, Nucleic acids research.

[96]  V. Filipello Marchisio,et al.  Keratinolytic and keratinophilic fungi in the soils of Papua New Guinea , 1991, Mycopathologia.

[97]  R. Poulin Group-living and infestation by ectoparasites in passerines , 1991 .

[98]  H. Salisch Recent developments in the chemotherapy of parasitic infections of poultry , 1989 .

[99]  Salvatore J. Agosta,et al.  Embracing Colonizations: A New Paradigm for Species Association Dynamics. , 2018, Trends in ecology & evolution.

[100]  J. Wojdak,et al.  Defensive Symbionts Mediate Host-Parasite Interactions at Multiple Scales. , 2017, Trends in parasitology.

[101]  N. Patience,et al.  Keratinolytic activity of Cladosporium and Trichoderma species isolated from barbers' landfill , 2015 .

[102]  H. Proctor,et al.  Mites: Ecology, Evolution & Behaviour , 2013, Springer Netherlands.

[103]  H. Proctor,et al.  Animals as Habitats , 2013 .

[104]  H. Proctor,et al.  Mites in Soil and Litter Systems , 2013 .

[105]  H. Proctor,et al.  Systematic and Morphological Survey , 2013 .

[106]  R. Poulin,et al.  Parasitism, commensalism, and mutualism: exploring the many shades of symbioses , 2008 .

[107]  E. Kirkness,et al.  Endosymbionts of lice. , 2008 .

[108]  JonathanH. West,et al.  The Air Spora: A manual for catching and identifying airborne biological particles , 2007 .

[109]  Cameron Goater Parasite Biodiversity , 2006 .

[110]  R. Jovani,et al.  Fine-tuned distribution of feather mites (Astigmata) on the wing of birds: the case of blackcaps Sylvia atricapilla , 2004 .

[111]  A. Kubátová,et al.  Mites as Selective Fungal Carriers in Stored Grain Habitats , 2004, Experimental & Applied Acarology.

[112]  R. Jovani Understanding parasite strategies. , 2003, Trends in parasitology.

[113]  W. T. Atyeo,et al.  Feather mites of the world (Acarina, Astigmata): the supraspecific taxa , 1996 .

[114]  J. Gaud Acquisition d'hôtes nouveaux par les acariens plumicoles , 1992 .

[115]  J. Jacob,et al.  Chapter 4 – THE UROPYGIAL GLAND , 1982 .

[116]  W. T. Atyeo FEATHER MITES AND THEIR HOSTS , 1979 .

[117]  Experimental studies on the significance of symbiosis in the clothes louse Pediculus vestimenti Burm , 1955 .