Conditions for swappability of records in a microdata set when some marginals are fixed

We consider swapping of two records in a microdata set for the purpose of disclosure control. We give some necessary and sufficient conditions that some observations can be swapped between two records under the restriction that a given set of marginals are fixed. We also give an algorithm to find another record for swapping if one wants to swap out some observations from a particular record.

[1]  Uzi Vishkin,et al.  An O(log n) Parallel Connectivity Algorithm , 1982, J. Algorithms.

[2]  Akimichi Takemura,et al.  Evaluation of per-record identification risk and swappability of records in a microdata set via decomposable models , 2006 .

[3]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[4]  A. Takemura,et al.  Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .

[5]  P. Diaconis,et al.  Algebraic algorithms for sampling from conditional distributions , 1998 .

[6]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..

[7]  Akimichi Takemura Local recoding by maximum weight matching for disclosure control of microdata sets , 1999 .

[8]  L. Willenborg,et al.  Elements of Statistical Disclosure Control , 2000 .

[9]  Seth Sullivant,et al.  A Divide-and-Conquer Algorithm for Generating Markov Bases of Multi-way Tables , 2004, Comput. Stat..

[10]  Jan Schlörer,et al.  Security of statistical databases: multidimensional transformation , 1980, TODS.

[11]  A. Dobra Markov bases for decomposable graphical models , 2003 .

[12]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[13]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[14]  D. Geiger,et al.  On the toric algebra of graphical models , 2006, math/0608054.

[15]  S. Reiss,et al.  Data-swapping: A technique for disclosure control , 1982 .