Conditions for swappability of records in a microdata set when some marginals are fixed
暂无分享,去创建一个
[1] Uzi Vishkin,et al. An O(log n) Parallel Connectivity Algorithm , 1982, J. Algorithms.
[2] Akimichi Takemura,et al. Evaluation of per-record identification risk and swappability of records in a microdata set via decomposable models , 2006 .
[3] Steffen L. Lauritzen,et al. Graphical models in R , 1996 .
[4] A. Takemura,et al. Minimal Basis for a Connected Markov Chain over 3 × 3 ×K Contingency Tables with Fixed Two‐Dimensional Marginals , 2003 .
[5] P. Diaconis,et al. Algebraic algorithms for sampling from conditional distributions , 1998 .
[6] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..
[7] Akimichi Takemura. Local recoding by maximum weight matching for disclosure control of microdata sets , 1999 .
[8] L. Willenborg,et al. Elements of Statistical Disclosure Control , 2000 .
[9] Seth Sullivant,et al. A Divide-and-Conquer Algorithm for Generating Markov Bases of Multi-way Tables , 2004, Comput. Stat..
[10] Jan Schlörer,et al. Security of statistical databases: multidimensional transformation , 1980, TODS.
[11] A. Dobra. Markov bases for decomposable graphical models , 2003 .
[12] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..
[13] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[14] D. Geiger,et al. On the toric algebra of graphical models , 2006, math/0608054.
[15] S. Reiss,et al. Data-swapping: A technique for disclosure control , 1982 .