The spatial and temporal organization of ubiquitin networks

In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms.

[1]  M. Rapé,et al.  Building ubiquitin chains: E2 enzymes at work , 2009, Nature Reviews Molecular Cell Biology.

[2]  Zhijian J. Chen,et al.  The role of ubiquitin in NF-kappaB regulatory pathways. , 2009, Annual review of biochemistry.

[3]  M. Figueiredo-Pereira,et al.  Aging perturbs 26S proteasome assembly in Drosophila melanogaster , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[4]  K. Broadie,et al.  The Ubiquitin Proteasome System Acutely Regulates Presynaptic Protein Turnover and Synaptic Efficacy , 2003, Current Biology.

[5]  A. Gingras,et al.  Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 , 2010, Nature.

[6]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[7]  L. Penengo,et al.  RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX , 2009, BMC Molecular Biology.

[8]  Noula Shembade,et al.  Inhibition of NF-κB Signaling by A20 Through Disruption of Ubiquitin Enzyme Complexes , 2010, Science.

[9]  H. Cremer,et al.  NCAM is ubiquitylated, endocytosed and recycled in neurons , 2007, Journal of Cell Science.

[10]  R. Youle,et al.  Role of the Ubiquitin Conjugation System in the Maintenance of Mitochondrial Homeostasis , 2008, Annals of the New York Academy of Sciences.

[11]  Ivan Dikic,et al.  Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. , 2009, Chemical reviews.

[12]  David Komander,et al.  Molecular discrimination of structurally equivalent Lys 63‐linked and linear polyubiquitin chains , 2009, EMBO reports.

[13]  Daniela Hoeller,et al.  Targeting the ubiquitin system in cancer therapy , 2009, Nature.

[14]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[15]  Y. Saeki,et al.  SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex , 2011, Nature.

[16]  J. Callis,et al.  Subcellular localization of ubiquitin and ubiquitinated proteins in Arabidopsis thaliana. , 1992, The Journal of biological chemistry.

[17]  Louisa Flintoft,et al.  Drosophila Nedd4, a Ubiquitin Ligase, Is Recruited by Commissureless to Control Cell Surface Levels of the Roundabout Receptor , 2002, Neuron.

[18]  R. Piper,et al.  ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting , 2009, The Journal of cell biology.

[19]  E. Schuman,et al.  Ubiquitin-Mediated Proteasome Activity Is Required for Agonist-Induced Endocytosis of GluRs , 2003, Current Biology.

[20]  David M. Umulis,et al.  Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing , 2005, Development.

[21]  M. Hochstrasser,et al.  Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue , 2007, Nature Cell Biology.

[22]  C. Holt,et al.  Chemotropic Responses of Retinal Growth Cones Mediated by Rapid Local Protein Synthesis and Degradation , 2001, Neuron.

[23]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[24]  M. Komada,et al.  Balanced ubiquitylation and deubiquitylation of Frizzled regulate cellular responsiveness to Wg/Wnt , 2010, The EMBO journal.

[25]  Aedín C Culhane,et al.  RAP80 Targets BRCA1 to Specific Ubiquitin Structures at DNA Damage Sites , 2007, Science.

[26]  A. Ciechanover,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[27]  P. Coccetti,et al.  CK2 and GSK3 phosphorylation on S29 controls wild-type ATXN3 nuclear uptake. , 2010, Biochimica et biophysica acta.

[28]  R. Greenberg,et al.  The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks , 2009, Proceedings of the National Academy of Sciences.

[29]  J. Huibregtse,et al.  The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme , 2005, The EMBO journal.

[30]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[31]  Min Gao,et al.  Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  N. Mailand,et al.  HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes , 2010, Nature Cell Biology.

[33]  T. Biederer,et al.  Role of Cue1p in ubiquitination and degradation at the ER surface. , 1997, Science.

[34]  M. Glickman,et al.  Proteasome plasticity , 2005, FEBS letters.

[35]  M. Washburn,et al.  Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. , 2008, Molecular cell.

[36]  K. Wilkinson DUBs at a glance , 2009, Journal of Cell Science.

[37]  Daniel J Klionsky,et al.  The Atg8 and Atg12 ubiquitin‐like conjugation systems in macroautophagy , 2008, EMBO reports.

[38]  Tohru Natsume,et al.  A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes , 2006, The EMBO journal.

[39]  Min Jae Lee,et al.  Trimming of Ubiquitin Chains by Proteasome-associated Deubiquitinating Enzymes* , 2010, Molecular & Cellular Proteomics.

[40]  S. Emr,et al.  Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface , 2008, Cell.

[41]  T. Hoppe,et al.  Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. , 2005, Trends in biochemical sciences.

[42]  Z. Zhai,et al.  GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth , 2008, Cell Research.

[43]  P. Cohen,et al.  Will the Ubiquitin System Furnish as Many Drug Targets as Protein Kinases? , 2010, Cell.

[44]  S. Polo,et al.  Endocytosis Conducts the Cell Signaling Orchestra , 2006, Cell.

[45]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[46]  R. Haguenauer‐Tsapis,et al.  Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. , 2008, Biochemical Society transactions.

[47]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature Neuroscience.

[48]  René Bernards,et al.  The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. , 2005, Molecular cell.

[49]  Katrin Rittinger,et al.  NEMO oligomerization and its ubiquitin-binding properties , 2009, The Biochemical journal.

[50]  T. Sommer,et al.  The ubiquitylation machinery of the endoplasmic reticulum , 2009, Nature.

[51]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[52]  C. Slack,et al.  Asymmetric localisation of Miranda and its cargo proteins during neuroblast division requires the anaphase-promoting complex/cyclosome , 2007, Development.

[53]  Akio Matsuda,et al.  Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling , 2008, PloS one.

[54]  M. Washburn,et al.  Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1 , 2006, Nature Cell Biology.

[55]  W. Fairbrother,et al.  c‐IAP1 and UbcH5 promote K11‐linked polyubiquitination of RIP1 in TNF signalling , 2010, The EMBO journal.

[56]  Tommer Ravid,et al.  Diversity of degradation signals in the ubiquitin–proteasome system , 2008, Nature Reviews Molecular Cell Biology.

[57]  H. Walden,et al.  Ubiquitin signalling in DNA replication and repair , 2010, Nature Reviews Molecular Cell Biology.

[58]  Ivan Dikic,et al.  Ubiquitylation and cell signaling , 2005, The EMBO journal.

[59]  M. J. Clague,et al.  Endocytosis: the DUB version. , 2006, Trends in cell biology.

[60]  K. Medzihradszky,et al.  Developmental-stage-specific regulation of the polyubiquitin receptors in Drosophila melanogaster , 2009, Journal of Cell Science.

[61]  Christoph H Emmerich,et al.  Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. , 2009, Molecular cell.

[62]  G. Wahl,et al.  A leucine‐rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking , 1999, The EMBO journal.

[63]  W. Gu,et al.  The multiple levels of regulation by p53 ubiquitination , 2010, Cell Death and Differentiation.

[64]  G. Wider,et al.  Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis , 2005, Science.

[65]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[66]  M. Peter,et al.  Function and regulation of protein neddylation , 2008, EMBO reports.

[67]  N. Hacohen,et al.  Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity , 2010, Cell.

[68]  A. Israël,et al.  NEMO specifically recognizes K63‐linked poly‐ubiquitin chains through a new bipartite ubiquitin‐binding domain , 2009, The EMBO journal.

[69]  M. Lohuizen,et al.  Human USP3 is a chromatin modifier required for S-phase progression and genome stability , 2008 .

[70]  Pier Paolo Di Fiore,et al.  Human USP3 Is a Chromatin Modifier Required for S Phase Progression and Genome Stability , 2007, Current Biology.

[71]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[72]  V. Dixit,et al.  Deubiquitinases in the regulation of NF-κB signaling , 2011, Cell Research.

[73]  J. Kaplan,et al.  The Anaphase-Promoting Complex Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans , 2004, Current Biology.

[74]  Yossi Kalifa,et al.  Gradients of a ubiquitin E3 ligase inhibitor and a caspase inhibitor determine differentiation or death in spermatids. , 2010, Developmental cell.

[75]  M. Glickman,et al.  Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. , 2008, Molecular biology of the cell.

[76]  Karl A Matuszewski,et al.  When One Size Doesn't Fit All. , 2012, P & T : a peer-reviewed journal for formulary management.

[77]  S. Jentsch,et al.  Principles of ubiquitin and SUMO modifications in DNA repair , 2009, Nature.

[78]  Julie H. Simpson,et al.  Short-Range and Long-Range Guidance by Slit and Its Robo Receptors A Combinatorial Code of Robo Receptors Controls Lateral Position , 2000, Cell.

[79]  S. Jentsch,et al.  A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting , 2005, Cell.

[80]  Soichi Wakatsuki,et al.  Ubiquitin-binding domains — from structures to functions , 2009, Nature Reviews Molecular Cell Biology.

[81]  S. Akira,et al.  Involvement of linear polyubiquitylation of NEMO in NF-κB activation , 2009, Nature Cell Biology.

[82]  Nektarios Tavernarakis,et al.  Regulation of autophagy by cytoplasmic p53 , 2008, Nature Cell Biology.

[83]  David Komander,et al.  Breaking the chains: structure and function of the deubiquitinases , 2009, Nature Reviews Molecular Cell Biology.

[84]  A. Varshavsky The N-end rule , 1992, Cell.

[85]  K. Jeang,et al.  Inflammatory cardiac valvulitis in TAX1BP1‐deficient mice through selective NF‐κB activation , 2008, The EMBO journal.

[86]  Anthony W. Purcell,et al.  Linear ubiquitination prevents inflammation and regulates immune signalling , 2011, Nature.

[87]  P. Meier,et al.  A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. , 2009, Molecular cell.

[88]  E L Ferguson,et al.  The DSmurf ubiquitin-protein ligase restricts BMP signaling spatially and temporally during Drosophila embryogenesis. , 2001, Developmental cell.

[89]  V. Dixit,et al.  Regulation of death receptor signaling by the ubiquitin system , 2010, Cell Death and Differentiation.

[90]  Shugaku Takeda,et al.  Medea SUMOylation restricts the signaling range of the Dpp morphogen in the Drosophila embryo. , 2008, Genes & development.

[91]  E. Schuman,et al.  Protein homeostasis and synaptic plasticity , 2010, The EMBO journal.

[92]  Ivan Dikic,et al.  Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction , 2008, Nature.

[93]  M. Lei,et al.  Arsenic degrades PML or PML–RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway , 2008, Nature Cell Biology.

[94]  E. Spiteri,et al.  FANCI is a second monoubiquitinated member of the Fanconi anemia pathway , 2007, Nature Structural &Molecular Biology.

[95]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[96]  Y. Lo,et al.  Molecular Basis for the Unique Deubiquitinating Activity of the NF-κ B Inhibitor A 20 , 2008 .

[97]  Harald Stenmark,et al.  The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins , 2009, Nature.

[98]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[99]  K. Lindsten,et al.  The ER‐resident ubiquitin‐specific protease 19 participates in the UPR and rescues ERAD substrates , 2009, EMBO reports.

[100]  B. Maček,et al.  SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis , 2011, Nature.

[101]  J. Bartek,et al.  The DNA-damage response in human biology and disease , 2009, Nature.

[102]  Hao Wu,et al.  Structural basis for recognition of diubiquitins by NEMO. , 2009, Molecular cell.

[103]  S. Gygi,et al.  Regulation of monoubiquitinated PCNA by DUB autocleavage , 2006, Nature Cell Biology.

[104]  Alexander Varshavsky,et al.  Regulated protein degradation. , 2005, Trends in biochemical sciences.

[105]  Azad Bonni,et al.  Cdh1-APC Controls Axonal Growth and Patterning in the Mammalian Brain , 2004, Science.

[106]  Julie H. Simpson,et al.  Short-Range and Long-Range Guidance by Slit and Its Robo Receptors Robo and Robo2 Play Distinct Roles in Midline Guidance , 2000, Neuron.

[107]  Nobuhiro Suzuki,et al.  Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation , 2009, Cell.

[108]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[109]  Thibault Mayor,et al.  The diversity of ubiquitin recognition: hot spots and varied specificity. , 2010, Molecular cell.

[110]  Kay Hofmann,et al.  Selective autophagy: ubiquitin-mediated recognition and beyond , 2010, Nature Cell Biology.

[111]  Kazuhiro Iwai,et al.  Linear polyubiquitination: a new regulator of NF‐κB activation , 2009, EMBO reports.

[112]  K. Sada,et al.  A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics , 2006, The EMBO journal.

[113]  A. Bonni,et al.  A Cdc20-APC Ubiquitin Signaling Pathway Regulates Presynaptic Differentiation , 2009, Science.

[114]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[115]  Muyang Li,et al.  Mono- Versus Polyubiquitination: Differential Control of p53 Fate by Mdm2 , 2003, Science.

[116]  Yizheng Wang,et al.  Requirement of dendritic Akt degradation by the ubiquitin–proteasome system for neuronal polarity , 2006, The Journal of cell biology.

[117]  S. Gygi,et al.  Ubiquitin Chains Are Remodeled at the Proteasome by Opposing Ubiquitin Ligase and Deubiquitinating Activities , 2006, Cell.

[118]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[119]  Petr Pancoska,et al.  p53 has a direct apoptogenic role at the mitochondria. , 2003, Molecular cell.

[120]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[121]  C. Rongo,et al.  KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. , 2005, Molecular biology of the cell.

[122]  S. Yamasaki,et al.  Cytoplasmic destruction of p53 by the endoplasmic reticulum‐resident ubiquitin ligase ‘Synoviolin’ , 2007, The EMBO journal.

[123]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[124]  Shao-Cong Sun,et al.  Regulation of the Deubiquitinating Enzyme CYLD by IκB Kinase Gamma-Dependent Phosphorylation , 2005, Molecular and Cellular Biology.

[125]  S. Emr,et al.  ESCRTing proteins in the endocytic pathway. , 2007, Trends in biochemical sciences.

[126]  D. Woods,et al.  C-Terminal Ubiquitination of p53 Contributes to Nuclear Export , 2001, Molecular and Cellular Biology.

[127]  Hengbin Wang,et al.  Regulation of cell cycle progression and gene expression by H2A deubiquitination , 2007, Nature.

[128]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[129]  Ivan Dikic,et al.  Proteasome subunit Rpn13 is a novel ubiquitin receptor , 2008, Nature.

[130]  A. Weissman,et al.  Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import , 2004, The Journal of cell biology.

[131]  Howard Riezman,et al.  Proteasome-Independent Functions of Ubiquitin in Endocytosis and Signaling , 2007, Science.

[132]  A. Ciechanover,et al.  Immunoelectron microscopic localization of ubiquitin in hepatoma cells. , 1988, The EMBO journal.

[133]  C. Klämbt,et al.  APC/CFzr/Cdh1-dependent regulation of cell adhesion controls glial migration in the Drosophila PNS , 2010, Nature Neuroscience.

[134]  René Bernards,et al.  A Genomic and Functional Inventory of Deubiquitinating Enzymes , 2005, Cell.

[135]  N. Nakamura,et al.  Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. , 2008, Molecular biology of the cell.

[136]  Erik Meulmeester,et al.  Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. , 2008, Molecular cell.

[137]  J. Huibregtse,et al.  Hse1, a component of the yeast Hrs-STAM ubiquitin-sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. , 2006, Molecular biology of the cell.

[138]  Alexander Varshavsky,et al.  N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals , 2010, Science.

[139]  S. Confalonieri,et al.  UMI, a Novel RNF168 Ubiquitin Binding Domain Involved in the DNA Damage Signaling Pathway , 2010, Molecular and Cellular Biology.

[140]  R. Pittman,et al.  Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. , 2006, Human molecular genetics.

[141]  J. Glover,et al.  RAD18 transmits DNA damage signaling to elicit homologous recombination repair , 2009, Nature Cell Biology.

[142]  B. Dickson,et al.  Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline , 2002, Cell.

[143]  J. Kaplan,et al.  LIN-23-Mediated Degradation of β-Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans , 2005, Neuron.

[144]  D J Glass,et al.  Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy , 2001, Science.

[145]  N. Crosetto,et al.  What Determines the Specificity and Outcomes of Ubiquitin Signaling? , 2010, Cell.

[146]  M. Bader,et al.  A Ubiquitin Ligase Complex Regulates Caspase Activation During Sperm Differentiation in Drosophila , 2007, PLoS Biology.