Chip-scale atomic devices at NIST

We provide an overview of our research on chip-scale atomic devices. By miniaturizing optical setups based on precision spectroscopy, we have developed small atomic sensors and atomic references such as atomic clocks, atomic magnetometers, and optical wavelength references. We have integrated microfabricated alkali vapor cells with small low-power lasers, micro-optics, and low-power microwave oscillators. As a result, we anticipate that atomic stability can be achieved with small size, low cost, battery-operated devices. Advances in fabrication methods and performance are presented.

[1]  John F. Kielkopf,et al.  The effect of neutral nonresonant collisions on atomic spectral lines , 1982 .

[2]  A. Bloom Principles of operation of the rubidium vapor magnetometer , 1962 .

[3]  H. Dehmelt Modulation of a Light Beam by Precessing Absorbing Atoms , 1957 .

[4]  J. Kitching,et al.  Atom-based stabilization for laser-pumped atomic clocks , 2006, Proceedings of the 20th European Frequency and Time Forum.

[5]  Svenja Knappe,et al.  Differentially detected coherent population trapping resonances excited by orthogonally polarized laser fields. , 2006, Optics express.

[6]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[7]  J. Kitching,et al.  Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. , 2005, Optics letters.

[8]  J. Kitching,et al.  Microfabricated alkali atom vapor cells , 2004 .

[9]  Michel Tetu,et al.  All-optical microwave frequency standard: a proposal , 1993 .

[10]  W. Happer,et al.  Electrolytic fabrication of atomic clock cells , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[11]  C. Wieman,et al.  A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb , 1992 .

[12]  Svenja Knappe,et al.  A chip-scale atomic magnetometer with improved sensitivity using the Mx technique , 2007 .

[13]  G. Orriols,et al.  An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour , 1976 .

[14]  A. E. Ivanov,et al.  Laser pumping in the scheme of an Mx-magnetometer , 1995 .

[15]  J. Vanier,et al.  The quantum physics of atomic frequency standards , 1989 .

[16]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[17]  G. Bison,et al.  A high-sensitivity laser-pumped Mx magnetometer , 2004, physics/0406105.

[18]  J. Kitching,et al.  A chip-scale atomic clock based on 87Rb with improved frequency stability. , 2005, Optics express.

[19]  Paolo Minguzzi,et al.  Foreign-Gas-Induced Cesium Hyperfine Relaxation , 1971 .

[20]  J. Kitching,et al.  Chip-scale atomic magnetometer , 2004 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  Christoph Affolderbach,et al.  Picotesla magnetometry with coherent dark states , 2001 .

[23]  W. Happer,et al.  Amplitude- versus frequency-modulated pumping light for coherent population trapping resonances at high buffer-gas pressure , 2005 .

[24]  Theodor W. Hänsch,et al.  Complete Hyperfine Structure of a Molecular Iodine Line , 1971 .

[25]  T. Gustavson,et al.  Precision Rotation Measurements with an Atom Interferometer Gyroscope , 1997 .

[26]  M. Kasevich,et al.  Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer , 1998 .

[27]  G. Wallis,et al.  Field Assisted Glass‐Metal Sealing , 1969 .

[28]  M. Romalis,et al.  High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. , 2002, Physical review letters.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Svenja Knappe,et al.  Coherent population trapping resonances in a thermal 85Rb vapor: D1 versus D2 excitation , 2002 .