Directional Sparsity in Optimal Control of Partial Differential Equations

We study optimal control problems in which controls with certain sparsity patterns are preferred. For time-dependent problems the approach can be used to find locations for control devices that allow controlling the system in an optimal way over the entire time interval. The approach uses a nondifferentiable cost functional to implement the sparsity requirements; additionally, bound constraints for the optimal controls can be included. We study the resulting problem in appropriate function spaces and present two solution methods of Newton type, based on different formulations of the optimality system. Using elliptic and parabolic test problems we research the sparsity properties of the optimal controls and analyze the behavior of the proposed solution algorithms.

[1]  Mila Nikolova,et al.  Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares , 2005, Multiscale Model. Simul..

[2]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[3]  Alfio Borzì,et al.  Multigrid Methods for PDE Optimization , 2009, SIAM Rev..

[4]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[5]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[6]  Defeng Sun,et al.  Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems , 1997, SIAM J. Optim..

[7]  M. Hintermüller,et al.  Fast solution techniques in constrained optimal boundary control of the semilinear heat equation , 2007 .

[8]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[9]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[10]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[11]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[12]  E. Haber,et al.  Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .

[13]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[14]  Kazufumi Ito,et al.  The Primal-Dual Active Set Method for Nonlinear Optimal Control Problems with Bilateral Constraints , 2004, SIAM J. Control. Optim..

[15]  Katya Scheinberg,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Block-coordinate Descent Algorithms for the Group Lasso , 2022 .

[16]  George Biros,et al.  Multigrid Algorithms for Inverse Problems with Linear Parabolic PDE Constraints , 2008, SIAM J. Sci. Comput..

[17]  Vladimir Tikhomirov,et al.  Theorie der Extremalaufgaben , 1979 .

[18]  Xue-Cheng Tai,et al.  Identification of Discontinuous Coefficients in Elliptic Problems Using Total Variation Regularization , 2003, SIAM J. Sci. Comput..

[19]  Massimo Fornasier,et al.  The application of joint sparsity and total variation minimization algorithms to a real-life art restoration problem , 2009, Adv. Comput. Math..

[20]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[21]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[22]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[23]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[24]  J. Diestel,et al.  On vector measures , 1974 .

[25]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[26]  Emmanuel J. Cand Near-ideal model selection by '1 minimization , 2008 .

[27]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[28]  H. Maurer,et al.  On L1‐minimization in optimal control and applications to robotics , 2006 .

[29]  Matjaž Omladič,et al.  Spectrum of the product of operators , 1988 .

[30]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[31]  Massimo Fornasier,et al.  Recovery Algorithms for Vector-Valued Data with Joint Sparsity Constraints , 2008, SIAM J. Numer. Anal..

[32]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[33]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.