Diatomics-in-Molecules Modeling of Many-Body Effects on the Structure and Thermodynamics of Mercury Clusters.

The stable structures and melting behavior of Hgn clusters, 2 ≤ n < 60, have been theoretically investigated using an updated diatomics-in-molecules (DIM) model initially proposed by Kitamura [Chem. Phys. Lett.2006, 425, 2056]. Global optimization and sampling at finite temperature are achieved on the basis of hierarchical and nested Markov chain Monte Carlo methods, respectively. The DIM model predicts highly symmetric icosahedral global minima that are generally similar to the standard van der Waals atomic clusters, without any indication of distorted or low-coordinated geometries, but also at variance with the global minima found with the pairwise Hg2 potential. The combined influences of surface and many-body effects due to s-p mixing are considerable on the melting point: although the model predicts a bulk melting temperature in fair agreement with experimental results, it is found to decrease with increasing cluster size.

[1]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[2]  F. Calvo,et al.  Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior , 2000 .

[3]  K. Bennemann,et al.  Theory for the transition from van der Waals to metallic bonding in small (mercury) clusters , 1990 .

[4]  M. Broyer,et al.  Size dependence of inner-shell autoionization lines in mercury clusters , 1985 .

[5]  H. Kitamura Cohesive properties of mercury clusters in the ground and excited states , 2007 .

[6]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[7]  B. von Issendorff,et al.  Metal to insulator transitions in clusters. , 2005, Annual review of physical chemistry.

[8]  L. González,et al.  On the behavior of single-particle dynamic properties of liquid Hg and other metals. , 2008, The Journal of chemical physics.

[9]  Bernd Hartke,et al.  Structures of mercury clusters in a quantum–empirical hybrid model , 2001 .

[10]  J. Weiner,et al.  Real-time observation of ultrafast ionization and fragmentation of mercury clusters , 1999 .

[11]  H. Stoll,et al.  Calculation of ground- and excited-state potential energy curves for the Hg2 molecule in a pseudopotential approach , 1997 .

[12]  J. L. Schreiber,et al.  A systematic procedure for extracting fragment matrices for the method of diatomics‐in‐molecules from ab initio calculations on diatomics , 1982 .

[13]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[14]  H. Kitamura The role of attractive many-body interaction in the gas–liquid transition of mercury , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  H. Haberland,et al.  Experimental Determination of the Melting Point and Heat Capacity for a Free Cluster of 139 Sodium Atoms , 1997 .

[16]  T. P. Martin,et al.  Evidence for a size‐dependent melting of sodium clusters , 1994 .

[17]  Thomas A. Weber,et al.  Hidden structure in liquids , 1982 .

[18]  K. Tamura,et al.  Local structure of expanded fluid mercury using synchrotron radiation: From liquid to dense vapor , 2003 .

[19]  Lev D. Gelb,et al.  Monte Carlo simulations using sampling from an approximate potential , 2003 .

[20]  F. Baletto,et al.  Amorphization mechanism of icosahedral metal nanoclusters. , 2004, Physical review letters.

[21]  Sanford Weisberg,et al.  Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .

[22]  F. Calvo,et al.  Composition-induced structural transitions in mixed rare-gas clusters , 2004 .

[23]  P. Schwerdtfeger,et al.  From the van der Waals dimer to the solid state of mercury with relativistic ab initio and density functional theory , 2006 .

[24]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[25]  M. Sence,et al.  Photoionization spectroscopy of small mercury clusters in the energy range from vacuum ultraviolet to soft x ray , 1995 .

[26]  M. Broyer,et al.  Stability and ionization threshold of doubly charged mercury clusters , 1985 .

[27]  M. Oschwald,et al.  Experimental study of the transition from van der Waals, over covalent to metallic bonding in mercury clusters , 1990 .

[28]  J. Bomont,et al.  An effective pair potential for thermodynamics and structural properties of liquid mercury. , 2006, The Journal of chemical physics.

[29]  J. Farges,et al.  Noncrystalline structure of argon clusters. II. Multilayer icosahedral structure of ArN clusters 50 , 1986 .

[30]  F. Calvo Efficiency of nested Markov chain Monte Carlo for polarizable potentials and perturbed Hamiltonians , 2010 .

[31]  D. Neumark,et al.  Time-resolved relaxation dynamics of Hgn- (11 , 2004, The Journal of chemical physics.

[32]  G. Tóth An iterative scheme to derive pair potentials from structure factors and its application to liquid mercury , 2003 .

[33]  J. L. Schreiber,et al.  A criterion for the applicability of the method of diatomics‐in‐molecules to potential surface calculations. I. Selection of the DIM basis , 1982 .

[34]  H. Kitamura Theoretical potential energy surfaces for excited mercury trimers , 2006 .

[35]  Klaus Sattler,et al.  Handbook of Nanophysics : Clusters and Fullerenes , 2010 .

[36]  J. Coe,et al.  Optimal sampling efficiency in Monte Carlo simulation with an approximate potential. , 2009, The Journal of chemical physics.

[37]  H. Kitamura Analysis of excited mercury clusters with diatomic potential energy curves , 2006 .

[38]  T. Matsuo,et al.  Observation of doubly charged mercury cluster ions Hgn2+, n=1-10 using secondary ion mass spectrometry , 1997 .

[39]  B. Schneider,et al.  Ground and excited states of Ne2 and Ne2+. I. Potential curves with and without spin‐orbit coupling , 1974 .

[40]  F. Calvo,et al.  All-exchanges parallel tempering. , 2005, The Journal of chemical physics.

[41]  H. Kitamura Equation of state for expanded fluid mercury: variational theory with many-body interaction. , 2007, The Journal of chemical physics.

[42]  S. Biering,et al.  High-pressure transitions in bulk mercury: a density functional study , 2011 .

[43]  M. S. Singh Relativistic effects in mercury: Atom, clusters, and bulk. , 1994, Physical review. B, Condensed matter.

[44]  M. Dolg,et al.  Size dependent properties of Hgn clusters , 1997 .

[45]  Rademann,et al.  Photoelectron spectroscopy of neutral mercury clusters Hgx (x <= 109) in a molecular beam. , 1992, Physical review letters.

[46]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[47]  K. Bennemann,et al.  Theory for the Transition from Van Der Waals to Covalent to Metallic Mercury Clusters , 1988 .

[48]  O. Cheshnovsky,et al.  DIRECT OBSERVATION OF BAND-GAP CLOSURE IN MERCURY CLUSTERS , 1998 .

[49]  Ryan M. Young,et al.  Auger recombination and excited state relaxation dynamics in Hg(n)(-) (n=9-20) anion clusters. , 2009, The Journal of chemical physics.

[50]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[51]  P. Pyykkö,et al.  Relativity and the mercury battery. , 2011, Physical chemistry chemical physics : PCCP.

[52]  F. Calvo,et al.  A highly accurate potential energy curve for the mercury dimer. , 2010, The Journal of chemical physics.

[53]  Jank,et al.  Structural and electronic properties of the liquid polyvalent elements. III. The trivalent elements. , 1990, Physical review. B, Condensed matter.

[54]  P. Buffat,et al.  Size effect on the melting temperature of gold particles , 1976 .

[55]  E. M. Fernández,et al.  GGA versus van der Waals density functional results for mixed gold/mercury molecules and pure Au and Hg cluster properties. , 2011, Physical chemistry chemical physics : PCCP.

[56]  Wolf,et al.  Probing the transition from van der Waals to metallic mercury clusters. , 1988, Physical review letters.

[57]  E. M. Greenawalt,et al.  Method of Diatomics in Molecules. IV. Ground and Excited States of H3+, H4+, H5+, and H6+ , 1967 .

[58]  S. D. Baranovskii,et al.  Photoinduced nucleation in supersaturated mercury vapor , 1998 .

[59]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[60]  Kavita Joshi,et al.  Why do gallium clusters have a higher melting point than the bulk? , 2004, Physical review letters.

[61]  P. Certain,et al.  Extended diatomics in molecules calculations , 1973 .

[62]  M. S. Singh From hexagonal close packed to rhombohedral structure: Relativistic effects in Zn, Cd, and Hg. , 1994, Physical review letters.

[63]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[64]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[65]  F. Calvo,et al.  Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations. , 2008, Angewandte Chemie.

[66]  A. Allouche,et al.  Predictions of geometrical structures and ionization potentials for small barium clusters Ba , 1998 .

[67]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[68]  Toshiki Sugai,et al.  Hot and solid gallium clusters: too small to melt. , 2003, Physical review letters.

[69]  B. Garrison,et al.  Diatomics in molecules: A simplified approach , 1984 .

[70]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[71]  Jonathan P. K. Doye,et al.  Quantum partition functions from classical distributions: Application to rare-gas clusters , 2001 .

[72]  A. Shvartsburg,et al.  Solid clusters above the bulk melting point , 2000, Physical review letters.

[73]  M. Jarrold,et al.  Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. , 2005, Physical review letters.

[74]  J. Doye,et al.  The effect of the range of the potential on the structures of clusters , 1995 .

[75]  M. Jarrold,et al.  Melting and freezing of metal clusters. , 2011, Annual review of physical chemistry.

[76]  J. Farges,et al.  Noncrystalline structure of argon clusters. I. Polyicosahedral structure of ArN clusters, 20 , 1983 .

[77]  Beate Paulus,et al.  Convergence of the ab initio many-body expansion for the cohesive energy of solid mercury , 2004 .

[78]  F. Calvo,et al.  Structure of nitrogen molecular clusters (N2)n with 13≤n≤55 , 1999 .

[79]  Richard J. Sadus,et al.  Molecular simulation of the vapor–liquid coexistence of mercury , 2003 .

[80]  Peter Schwerdtfeger,et al.  Properties of small- to medium-sized mercury clusters from a combined ab initio, density-functional, and simulated-annealing study. , 2002, Physical review letters.

[81]  F. Hensel,et al.  The dielectric anomaly and clustering effects in dense mercury vapour , 1985 .

[82]  S. Patil Interaction of inert‐gas atoms with some closed‐shell cations and formation of cluster molecules , 1991 .