Maximum entropy pole-zero estimation

We describe a new Maximum Entropy pole-zero spectral estimation method. The model is designed to match given correlation and cepstral values, yet achieve the maximum possible entropy. The solution is based on solving a generalized symmetric almost-Toeplitz eigenvalue problem. We characterize this solution, present a fast computational algorithm, and give examples.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  R. Roberts,et al.  The use of second-order information in the approximation of discreate-time linear systems , 1976 .

[3]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[4]  Donald R. Smith Variational methods in optimization , 1974 .

[5]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[6]  J. Durbin EFFICIENT ESTIMATION OF PARAMETERS IN MOVING-AVERAGE MODELS , 1959 .

[7]  M. Lagunas-Hernandez,et al.  ARMA model maximum entropy power spectral estimation , 1984 .

[8]  L. Scharf,et al.  Statistical design of autoregressive-moving average digital filters , 1979 .

[9]  Alan V. Oppenheim,et al.  Speech analysis homomorphic prediction , 1977 .

[10]  B. Yegnanarayana Speech analysis by pole-zero decomposition of short-time spectra , 1981 .

[11]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[12]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[13]  Bruce Ronald. Musicus,et al.  Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices , 1988 .

[14]  L. Ljung,et al.  New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices , 1979 .

[15]  J. P. Burg,et al.  Maximum entropy spectral analysis. , 1967 .

[16]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[17]  Donald G. Childers,et al.  Modern Spectrum Analysis , 1978 .

[18]  T. Teichmann,et al.  The Measurement of Power Spectra , 1960 .

[19]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[20]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[21]  Jack J. Dongarra,et al.  Matrix Eigensystem Routines — EISPACK Guide Extension , 1977, Lecture Notes in Computer Science.