A Decomposition Formula of Idempotent Polyhedral Cones Based on Idempotent Superharmonic Spaces

In this paper we study the generators of idempotent polyhedral cones which appear of main importance in many fields of applications such as control of discrete event systems, verification of concurrent systems, analysis of Petri nets. We give an explicit formula for the set of generators. This formula makes clearly appear the role of the data used to describe the idempotent polyhedral cone. This formula is based on the Develin-Sturmfels cellular decomposition. From this formula we provide an algorithm which could be easily partially parallelizable. From this formula we also give a bound on the number of generators and the expression of the necessary and sufficient condition under which the set of generators is reduced to the null space. We illustrate our results on an example of transportation network. MSC 2000: 06F07, 52C45

[1]  Grigori Litvinov,et al.  Exact interval solutions to the discrete Bellman equation and polynomial complexity of problems in interval idempotent linear algebra , 2001 .

[2]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[3]  David L. Dill,et al.  Timing Assumptions and Verification of Finite-State Concurrent Systems , 1989, Automatic Verification Methods for Finite State Systems.

[4]  M. Joswig Tropical Halfspaces , 2003, math/0312068.

[5]  Sergei Sergeev,et al.  Multiorder, Kleene stars and cyclic projectors in the geometry of max cones , 2008, 0807.0921.

[6]  E. Wagneur Moduloïds and pseudomodules , 1990 .

[7]  Ricardo D. Katz,et al.  Max-Plus Convex Geometry , 2006, RelMiCS.

[8]  Peter Butkovič,et al.  Introduction to max-linear programming , 2009 .

[9]  S. Gaubert,et al.  The max-plus Martin boundary , 2004, Documenta Mathematica.

[10]  Bernard Berthomieu,et al.  An Enumerative Approach for Analyzing Time Petri Nets , 1983, IFIP Congress.

[11]  Max-plus definite matrix closures and their eigenspaces , 2005, math/0506177.

[12]  J. Quadrat,et al.  Linear Projectors in the max-plus Algebra , 1997 .

[13]  Ricardo Katz Max-Plus $(A,B)$-Invariant Spaces and Control of Timed Discrete-Event Systems , 2007, IEEE Transactions on Automatic Control.

[14]  Laurent Truffet,et al.  Idempotent versions of Haar's Lemma: links between comparison of discrete event systems with different state spaces and control , 2007, Kybernetika.

[15]  Antoine Miné,et al.  The octagon abstract domain , 2001, High. Order Symb. Comput..

[16]  Peter Butkovic,et al.  The equation A⊗x=B⊗y over (max, +) , 2003, Theor. Comput. Sci..

[17]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[18]  Виктор Павлович Маслов,et al.  Идемпотентный функциональный анализ. Алгебраический подход@@@Idempotent Functional Analysis: An Algebraic Approach , 2001 .

[19]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[20]  B. Sturmfels,et al.  Tropical Convexity , 2003, math/0308254.

[21]  R. A. Cuninghame-Green,et al.  Describing Industrial Processes with Interference and Approximating Their Steady-State Behaviour , 1962 .

[22]  Victor Pavlovich Maslov,et al.  Advances in Soviet mathematics , 1990 .

[23]  B. Schutter,et al.  On max-algebraic models for transportation networks , 1998 .

[24]  Eric Goubault,et al.  Inferring Min and Max Invariants Using Max-Plus Polyhedra , 2008, SAS.

[25]  P. Moral,et al.  On Applications of Maslov Optimization Theory , 2001 .