Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes

[1]  Z. Wen,et al.  Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries , 2018, Energy Storage Materials.

[2]  Ji‐Guang Zhang,et al.  A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries , 2018, Nano Energy.

[3]  Lauren E. Marbella,et al.  Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. , 2018, Journal of the American Chemical Society.

[4]  Seong‐Hyeon Hong,et al.  A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries , 2018 .

[5]  Yitai Qian,et al.  Green, Scalable, and Controllable Fabrication of Nanoporous Silicon from Commercial Alloy Precursors for High-Energy Lithium-Ion Batteries. , 2018, ACS nano.

[6]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[7]  Jung Kyoo Lee,et al.  Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes. , 2018, ACS nano.

[8]  Chongmin Wang,et al.  Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries , 2018 .

[9]  Ji-Won Jung,et al.  Highly porous coral-like silicon particles synthesized by an ultra-simple thermal-reduction method , 2018 .

[10]  P. Chu,et al.  Highly Stretchable Conductive Glue for High‐Performance Silicon Anodes in Advanced Lithium‐Ion Batteries , 2018 .

[11]  Qiaobao Zhang,et al.  In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors , 2017 .

[12]  Lianjun Wang,et al.  Surface and Interface Engineering of Silicon‐Based Anode Materials for Lithium‐Ion Batteries , 2017 .

[13]  Jaephil Cho,et al.  Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries , 2017 .

[14]  Jaephil Cho,et al.  One‐to‐One Comparison of Graphite‐Blended Negative Electrodes Using Silicon Nanolayer‐Embedded Graphite versus Commercial Benchmarking Materials for High‐Energy Lithium‐Ion Batteries , 2017 .

[15]  Stefan A. Freunberger,et al.  True performance metrics in beyond-intercalation batteries , 2017, Nature Energy.

[16]  Xiaogang Zhang,et al.  Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[17]  Kwang Soo Kim,et al.  Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode. , 2017, ACS nano.

[18]  Yang Jin,et al.  Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9% , 2017 .

[19]  Ya‐Xia Yin,et al.  Watermelon‐Inspired Si/C Microspheres with Hierarchical Buffer Structures for Densely Compacted Lithium‐Ion Battery Anodes , 2017 .

[20]  Donghai Wang,et al.  Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries , 2016 .

[21]  Ya‐Xia Yin,et al.  Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries , 2016 .

[22]  Jaephil Cho,et al.  Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries , 2016 .

[23]  Hyun-Wook Lee,et al.  Erratum: Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes , 2016, Nature Energy.

[24]  Chongmin Wang,et al.  Inward lithium-ion breathing of hierarchically porous silicon anodes , 2015, Nature Communications.

[25]  Dingchang Lin,et al.  A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries , 2015 .

[26]  Min Gyu Kim,et al.  High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers , 2015 .

[27]  Xiulin Fan,et al.  Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. , 2015, ACS nano.

[28]  Huajian Gao,et al.  Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li‐Ion Battery , 2015 .

[29]  Wei Fu,et al.  Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li‐Ion Battery Anodes with High Structure Stability , 2014, Advanced materials.

[30]  Michael J Sailor,et al.  Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes , 2014, Nature Communications.

[31]  T. Wada,et al.  Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. , 2014, Nano letters.

[32]  H. Meyer,et al.  Role of surface functionality in the electrochemical performance of silicon nanowire anodes for rechargeable lithium batteries. , 2014, ACS applied materials & interfaces.

[33]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[34]  Shuru Chen,et al.  Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries , 2014 .

[35]  Jing Ning,et al.  High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. , 2013, Nano letters.

[36]  Yi Cui,et al.  25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium‐Ion Batteries , 2013, Advanced materials.

[37]  P. Moreau,et al.  A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries , 2013 .

[38]  Jaephil Cho,et al.  Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries. , 2013, Nano letters.

[39]  Shuru Chen,et al.  Micro‐sized Si‐C Composite with Interconnected Nanoscale Building Blocks as High‐Performance Anodes for Practical Application in Lithium‐Ion Batteries , 2013 .

[40]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[41]  Jung-Ki Park Principles and Applications of Lithium Secondary Batteries: PARK:LI BATTERIES O-BK , 2012 .

[42]  Jaephil Cho,et al.  High‐Performance Macroporous Bulk Silicon Anodes Synthesized by Template‐Free Chemical Etching , 2012 .

[43]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[44]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[45]  Jung-Ki Park,et al.  Principles and applications of lithium secondary batteries , 2012 .

[46]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[47]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[48]  Bruno Scrosati,et al.  An advanced lithium ion battery based on high performance electrode materials. , 2011, Journal of the American Chemical Society.

[49]  Yi Cui,et al.  Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries , 2010 .

[50]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[51]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[52]  M. Armand,et al.  Building better batteries , 2008, Nature.

[53]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[54]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[55]  H. Uchida,et al.  Synthesis of magnesium silicon nitride by the nitridation of powders in the magnesium-silicon system , 1997 .