Efficient hyperentangled Greenberger–Horne–Zeilinger states analysis with cross-Kerr nonlinearity

The entangled states analysis is a very important element for quantum information. It is impossible to unambiguously distinguish the three-photon Greenberger–Horne–Zeilinger (GHZ) states in polarization, resorting to linear optical elements only. Here, we propose an efficient scheme to complete three-photon hyperentangled GHZ states analysis (HGSA) with the help of the cross-Kerr nonlinearity. The three-photon HGSA scheme can also be generalized to N-photon hyperentangled GHZ states analysis. We discuss the application of the HGSA in the quantum secure direct communication (QSDC) with polarization and spatial-mode degrees of freedom. The results show that the HGSA not only increase the channel capacity but also ensure the unconditional security in long-distance quantum communication.

[1]  John Calsamiglia Generalized measurements by linear elements , 2002 .

[2]  Keiji Sasaki,et al.  Optimized phase switching using a single-atom nonlinearity , 2002, quant-ph/0208029.

[3]  N. Gisin,et al.  Quantum teleportation with a three-Bell-state analyzer. , 2006 .

[4]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[5]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[6]  Jiangde Peng,et al.  Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs , 2008 .

[7]  Yansong Li,et al.  Optical implementation of quantum random walks using weak cross-Kerr media , 2011 .

[8]  Julio Gea-Banacloche,et al.  Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets , 2009, 0911.4682.

[9]  Xiu-Min Lin,et al.  Optical Bell state and Greenberger―Horne―Zeilinger-state analyzers through the cavity input―output process , 2009 .

[10]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[11]  Jie Song,et al.  Linear optical protocol for preparation of N-photon Greenberger–Horne–Zeilinger state with conventional photon detectors , 2008 .

[12]  G. Vallone,et al.  Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement , 2006, quant-ph/0609080.

[13]  H M Wiseman,et al.  Measurement of quantum weak values of photon polarization. , 2005, Physical review letters.

[14]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[15]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[16]  Bing He,et al.  Single-photon logic gates using minimal resources , 2009, 0909.0300.

[17]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[18]  S D Bartlett,et al.  Measuring a photonic qubit without destroying it. , 2004, Physical review letters.

[19]  J. Bergou,et al.  Processing multiphoton states through operation on a single photon: Methods and applications , 2009, 0909.3879.

[20]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[21]  Fuguo Deng,et al.  Multipartite electronic entanglement purification with charge detection , 2011, 1110.0057.

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  Masahiro Takeoka,et al.  Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector , 2010, 1002.0232.

[24]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[25]  Harald Weinfurter,et al.  Embedded Bell-state analysis , 1998 .

[26]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[27]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[28]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[29]  Howard Mark Wiseman,et al.  Quantum nondemolition measurements for quantum information , 2006 .

[30]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[31]  Yan Xia,et al.  Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding , 2007 .

[32]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[33]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[34]  Jie Song,et al.  Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons , 2011 .

[35]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[36]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[37]  Jonathan P. Dowling,et al.  Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements , 2002 .

[38]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[39]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[40]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[41]  Z. Man,et al.  Multiparty quantum secret sharing of classical messages based on entanglement swapping , 2004, quant-ph/0406103.

[42]  S. Ghose,et al.  Tripartite entanglement versus tripartite nonlocality in three-qubit Greenberger-Horne-Zeilinger-class states. , 2008, Physical review letters.

[43]  Chuan Wang,et al.  Quantum key distribution using polarization and frequency hyperentangled photons , 2009 .

[44]  Fuguo Deng,et al.  Bidirectional quantum key distribution protocol with practical faint laser pulses , 2004 .

[45]  T. Spiller,et al.  Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities , 2004, quant-ph/0408117.

[46]  X. Zou,et al.  Conditional generation of the Greenberger-Horne-Zeilinger state of four distant atoms via cavity decay , 2003 .

[47]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[48]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[49]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[50]  A. Zeilinger,et al.  Communications: Quantum teleportation across the Danube , 2004, Nature.

[51]  Chang-shui Yu,et al.  Nondestructive identification of the Bell diagonal state , 2011 .

[52]  L. Vaidman,et al.  Methods for Reliable Teleportation , 1998, quant-ph/9808040.

[53]  N. Lutkenhaus,et al.  Bell measurements for teleportation , 1998, quant-ph/9809063.

[54]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .