Breaking the curse of dimensionality: hierarchical Bayesian network model for multi-view clustering

[1]  Sudarson Jena,et al.  Correlation based feature selection with clustering for high dimensional data , 2018, Journal of Electrical Systems and Information Technology.

[2]  M. Suchard,et al.  Bayesian nonparametric clustering in phylogenetics: modeling antigenic evolution in influenza , 2017, Statistics in medicine.

[3]  Griselda López,et al.  Analysis of traffic accidents on rural highways using Latent Class Clustering and Bayesian Networks. , 2013, Accident; analysis and prevention.

[4]  J. Stutz,et al.  Autoclass — A Bayesian Approach to Classification , 1996 .

[5]  Wei-Chien Chang On using Principal Components before Separating a Mixture of Two Multivariate Normal Distributions , 1983 .

[6]  Bertil Schmidt,et al.  Scalable Clustering by Iterative Partitioning and Point Attractor Representation , 2016, ACM Trans. Knowl. Discov. Data.

[7]  Christopher K. I. Williams,et al.  Greedy Learning of Binary Latent Trees , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Hao Wu,et al.  Structure Learning of Bayesian Network with Latent Variables by Weight-Induced Refinement , 2014, Web-KR '14.

[9]  Nir Friedman,et al.  Learning Bayesian Networks from Data , 2001 .

[10]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[11]  Nenad Tomasev Taming the Empirical Hubness Risk in Many Dimensions , 2015, SDM.

[12]  Nevin Lianwen Zhang,et al.  Hierarchical latent class models for cluster analysis , 2002, J. Mach. Learn. Res..

[13]  Fabrizio Angiulli,et al.  On the Behavior of Intrinsically High-Dimensional Spaces: Distances, Direct and Reverse Nearest Neighbors, and Hubness , 2017, J. Mach. Learn. Res..

[14]  Tengfei Liu,et al.  A Survey on Latent Tree Models and Applications , 2013, J. Artif. Intell. Res..

[15]  Walid Mahdi,et al.  A New Equilibrium Criterion for Learning the Cardinality of Latent Variables , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).

[16]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[17]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[18]  Shamik Sural,et al.  RESTRAC: REference Sequence Based Space TRAnsformation for Clustering , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[19]  Yiyu Yao,et al.  Information-Theoretic Measures for Knowledge Discovery and Data Mining , 2003 .

[20]  Tao Chen,et al.  Model-based multidimensional clustering of categorical data , 2012, Artif. Intell..

[21]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[22]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[23]  Shusen Wang,et al.  Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds , 2017, J. Mach. Learn. Res..

[24]  Ira Assent,et al.  Scalable and Interactive Graph Clustering Algorithm on Multicore CPUs , 2017, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[25]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[26]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[27]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[28]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[29]  Arun Kumar Sangaiah,et al.  ESCAPE: Effective Scalable Clustering Approach for Parallel Execution of Continuous Position-Based Queries in Position Monitoring Applications , 2017, IEEE Transactions on Sustainable Computing.

[30]  Mark J. Embrechts,et al.  On the Use of the Adjusted Rand Index as a Metric for Evaluating Supervised Classification , 2009, ICANN.