TreePartNet: neural decomposition of point clouds for 3D tree reconstruction

YANCHAO LIU, University of Chinese Academy of Sciences, Shenzhen University and NLPR, CASIA, China JIANWEI GUO, NLPR, Institute of Automation, CAS and University of Chinese Academy of Sciences, China BEDRICH BENES, Purdue University, USA OLIVER DEUSSEN, SIAT and University of Konstanz, Germany XIAOPENG ZHANG, NLPR, Institute of Automation, CAS and University of Chinese Academy of Sciences, China HUI HUANG, Shenzhen University, China

[1]  Tamy Boubekeur,et al.  Bounding proxies for shape approximation , 2017, ACM Trans. Graph..

[2]  Daniel Cohen-Or,et al.  Point2Mesh , 2020, ACM Trans. Graph..

[3]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Dong-Ming Yan,et al.  Realistic Procedural Plant Modeling from Multiple View Images , 2020, IEEE Transactions on Visualization and Computer Graphics.

[5]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[6]  Paul A. Beardsley,et al.  Image-based reconstruction and synthesis of dense foliage , 2013, ACM Trans. Graph..

[7]  Hao Zhang,et al.  Learning Implicit Fields for Generative Shape Modeling , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yaron Lipman,et al.  SAL: Sign Agnostic Learning of Shapes From Raw Data , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  H. Honda Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the sample of the tree-like body. , 1971, Journal of theoretical biology.

[10]  Shuguang Cui,et al.  PointASNL: Robust Point Clouds Processing Using Nonlocal Neural Networks With Adaptive Sampling , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Radomír Mech,et al.  Self-organizing tree models for image synthesis , 2009, ACM Trans. Graph..

[12]  Thomas Brox,et al.  Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[14]  Michael Wimmer,et al.  Points2Surf Learning Implicit Surfaces from Point Clouds. , 2020, ECCV 2020.

[15]  Timo Ropinski,et al.  Monte Carlo convolution for learning on non-uniformly sampled point clouds , 2018, ACM Trans. Graph..

[16]  Fuxin Li,et al.  PointConv: Deep Convolutional Networks on 3D Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Julie Dorsey,et al.  Reconstructing 3D Tree Models from Instrumented Photographs , 2001, IEEE Computer Graphics and Applications.

[18]  Gordon Wetzstein,et al.  DeepVoxels: Learning Persistent 3D Feature Embeddings , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[20]  Tiow Seng Tan,et al.  Decomposing polygon meshes for interactive applications , 2001, I3D '01.

[21]  Adam Runions,et al.  Modeling Trees with a Space Colonization Algorithm , 2007, NPH.

[22]  Jianwei Guo,et al.  Single Image Tree Reconstruction via Adversarial Network , 2021, Graph. Model..

[23]  Subhransu Maji,et al.  Label-Efficient Learning on Point Clouds using Approximate Convex Decompositions , 2020, ECCV.

[24]  Dong-Ming Yan,et al.  Efficient and robust reconstruction of botanical branching structure from laser scanned points , 2009, 2009 11th IEEE International Conference on Computer-Aided Design and Computer Graphics.

[25]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[26]  Radomír Mech,et al.  Inverse Procedural Modelling of Trees , 2014, Comput. Graph. Forum.

[27]  Subhransu Maji,et al.  3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks , 2017, 2017 International Conference on 3D Vision (3DV).

[28]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[29]  Richard A. Newcombe,et al.  DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Jitendra Malik,et al.  Learning Category-Specific Mesh Reconstruction from Image Collections , 2018, ECCV.

[31]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Duc Thanh Nguyen,et al.  JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds With Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Xiaoguang Han,et al.  A Skeleton-Bridged Deep Learning Approach for Generating Meshes of Complex Topologies From Single RGB Images , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Przemyslaw Prusinkiewicz,et al.  Graphical applications of L-systems , 1986 .

[35]  D. Michels,et al.  Learning to reconstruct botanical trees from single images , 2021, ACM Trans. Graph..

[36]  Alla Sheffer,et al.  PolyCut , 2013, ACM Trans. Graph..

[37]  Wei Liu,et al.  Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images , 2018, ECCV.

[38]  Aristid Lindenmayer,et al.  Mathematical Models for Cellular Interactions in Development , 1968 .

[39]  Sebastian Nowozin,et al.  Occupancy Networks: Learning 3D Reconstruction in Function Space , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Long Quan,et al.  Data-Driven Synthetic Modeling of Trees , 2014, IEEE Transactions on Visualization and Computer Graphics.

[41]  Philip J. Willis,et al.  Modeling and generating moving trees from video , 2011, SA '11.

[42]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[43]  Maks Ovsjanikov,et al.  PCPNet Learning Local Shape Properties from Raw Point Clouds , 2017, Comput. Graph. Forum.

[44]  Daniel Cohen-Or,et al.  Generalized cylinder decomposition , 2015, ACM Trans. Graph..

[45]  Min Liu,et al.  Towards locally and globally shape-aware reverse 3D modeling , 2012, Comput. Aided Des..

[46]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[47]  Marc Jaeger,et al.  Plant models faithful to botanical structure and development , 1988, SIGGRAPH.

[48]  George Drettakis,et al.  Volumetric reconstruction and interactive rendering of trees from photographs , 2004, ACM Trans. Graph..

[49]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[50]  Junjie Cao,et al.  Point Cloud Skeletons via Laplacian Based Contraction , 2010, 2010 Shape Modeling International Conference.

[51]  Long Quan,et al.  Image-based plant modeling , 2006, ACM Trans. Graph..

[52]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[53]  Hugo Ledoux,et al.  AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees , 2019, Remote. Sens..

[54]  Daniel Cohen-Or,et al.  Texture-lobes for tree modelling , 2011, ACM Trans. Graph..

[55]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[56]  Klaus Dietmayer,et al.  Point Transformer , 2020, IEEE Access.

[57]  Hui Xu,et al.  Knowledge and heuristic-based modeling of laser-scanned trees , 2007, TOGS.

[58]  E. Kalogerakis,et al.  RigNet , 2020, ACM Trans. Graph..

[59]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[60]  Carlos Andújar,et al.  Single-picture reconstruction and rendering of trees for plausible vegetation synthesis , 2016, Comput. Graph..

[61]  Daniel Cremers,et al.  Clustering with Deep Learning: Taxonomy and New Methods , 2018, ArXiv.

[62]  Yasushi Yagi,et al.  Probabilistic Plant Modeling via Multi-view Image-to-Image Translation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[63]  Daniel Cohen-Or,et al.  L1-medial skeleton of point cloud , 2013, ACM Trans. Graph..

[64]  Thomas A. Funkhouser,et al.  Learning Shape Templates With Structured Implicit Functions , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[65]  Ralph R. Martin,et al.  PCT: Point cloud transformer , 2020, Computational Visual Media.

[66]  Yaron Lipman,et al.  Point convolutional neural networks by extension operators , 2018, ACM Trans. Graph..

[67]  Daniel Cohen-Or,et al.  LOGAN , 2019, ACM Trans. Graph..

[68]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[69]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[70]  Ulrich Neumann,et al.  SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[71]  Chen Kong,et al.  Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction , 2017, AAAI.

[72]  Thomas Funkhouser,et al.  Local Deep Implicit Functions for 3D Shape , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Leonidas J. Guibas,et al.  Learning Representations and Generative Models for 3D Point Clouds , 2017, ICML.

[74]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[75]  Hao Zhang,et al.  BSP-Net: Generating Compact Meshes via Binary Space Partitioning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[76]  Leonidas J. Guibas,et al.  Learning Shape Abstractions by Assembling Volumetric Primitives , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[78]  Tamy Boubekeur,et al.  A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data , 2018, Comput. Graph. Forum.

[79]  Hao Su,et al.  A Point Set Generation Network for 3D Object Reconstruction from a Single Image , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Oliver Deussen,et al.  Approximate image-based tree-modeling using particle flows , 2007, ACM Trans. Graph..

[81]  Bedrich Benes,et al.  Interactive Modeling of Virtual Ecosystems , 2009, NPH.

[82]  Zygmunt Pizlo,et al.  Skeleton Extraction from 3D Point Clouds by Decomposing the Object into Parts , 2019, ArXiv.

[83]  Jianwei Guo,et al.  Tree Growth Modelling Constrained by Growth Equations , 2018, Comput. Graph. Forum.

[84]  Daniel G. Aliaga,et al.  Inverse Procedural Modeling by Automatic Generation of L‐systems , 2010, Comput. Graph. Forum.

[85]  Matt Olson,et al.  Automatic reconstruction of tree skeletal structures from point clouds , 2010, ACM Trans. Graph..

[86]  Raja Giryes,et al.  PointGMM: A Neural GMM Network for Point Clouds , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  Andrea Tagliasacchi,et al.  CvxNet: Learnable Convex Decomposition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).