How Do Display Design and User Characteristics Matter in Animations?: An Empirical Study with Air Traffic Control Displays

We detail an empirical animation study to assess how display design, user spatial ability, and training might influence visuospatial decision-making with animated displays showing aircraft movements. We present empirical results of a visuospatial detection task with moving objects, based on response accuracy and response time, including a descriptive eye-movement analysis. We found significant differences in a visuospatial detection task of moving objects across animation design types and domain expertise levels based on viewers’ visuospatial skill differences. With this empirical approach, we hope to better understand how users explore and extract information from animated displays. Based on these results, we aim to further develop empirically validated animation display design guidelines to increase their efficiency and effectiveness for decision-making with and about moving objects.Nous présentons en détail une expérimentation évaluant des tâches utilisateurs dans un contexte de visualisation dyna-mique représentant des mouvements d’avions sur une interface de contrôle aérien. Nous cherchons à évaluer l’influence des principes d’affichage et du niveau d’expertise sur les aptitudes spatiales des participants à prendre des décisions. L’évaluation est basée sur l’exactitude des réponses données, le temps de réponse, et analyse descriptive des mouvements oculaires (eye tracking). Nous constatons des différences significatives dans la détection visuelle et spatiale d’objets en mouvement, selon le type d’animation et le niveau d’expertise des utilisateurs. À l’aide de cette expérimentation, nous espérons mieux comprendre comment les utilisateurs examinent, interprétent et extraient des connaissances à partir d’affichages dynamiques. À partir de ces résultats, nous souhaitons dégager des principes directeurs qui nous permettrons d’améliorer la conception d’animation, nous cherchons ainsi à accroître l’efficacité dans les prises de décisions des utilisateurs considérant la visualisation d’objets en mouvement.

[1]  Mary Hegarty,et al.  The Roles of Mental Animations and External Animations in Understanding Mechanical Systems , 2003 .

[2]  Mary Hegarty,et al.  Top-down and bottom-up influences on learning from animations , 2007, Int. J. Hum. Comput. Stud..

[3]  S. Maggi,et al.  Embodied decision making with animations , 2014 .

[4]  Kirk Goldsberry,et al.  Considerations in Design of Transition Behaviors for Dynamic Thematic Maps , 2010 .

[5]  P. Cavanagh,et al.  Tracking multiple targets with multifocal attention , 2005, Trends in Cognitive Sciences.

[6]  Richard K. Lowe Extracting information from an animation during complex visual learning , 1999 .

[7]  E. Revilla,et al.  Trends and missing parts in the study of movement ecology , 2008, Proceedings of the National Academy of Sciences.

[8]  Ric Lowe Perceptual learning in the comprehension of animation and animated diagrams , 2015 .

[9]  D. Lubinski,et al.  Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. , 2009 .

[10]  Thomas W. Calvert,et al.  Moving Icons: Detection and Distraction , 2001, INTERACT.

[11]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[12]  Terry C. Lansdown,et al.  The mind's eye: cognitive and applied aspects of eye movement research , 2005 .

[13]  Richard K. Lowe,et al.  An Eye Tracking Comparison of External Pointing Cues and Internal Continuous Cues in Learning with Complex Animations , 2010 .

[14]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[15]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[16]  Sara Irina Fabrikant,et al.  Introduction: Cognitive Issues in Geographic Information Visualization , 2009, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[17]  Sara Irina Fabrikant,et al.  THEMATIC RELEVANCE AND PERCEPTUAL SALIENCE OF DYNAMIC GEOVISUALIZATION DISPLAYS , 2005 .

[18]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[19]  Sara Irina Fabrikant,et al.  Triangulating Eye Movement Data of Animated Displays , 2014, ET4S@GIScience.

[20]  J. Henderson,et al.  The effects of semantic consistency on eye movements during complex scene viewing , 1999 .

[21]  Alexandru Telea,et al.  Dynamic multiscale visualization of flight data , 2015, 2014 International Conference on Computer Vision Theory and Applications (VISAPP).

[22]  Ruth B. Ekstrom,et al.  Manual for kit of factor-referenced cognitive tests , 1976 .

[23]  Paul U. Lee,et al.  Dynamic Aspects of Spatial Information in Air Traffic Controller Displays , 2005, AAAI Spring Symposium: Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance.

[24]  William S. Helton,et al.  Validation of a Short Stress State Questionnaire , 2004 .

[25]  Christopher D. Wickens,et al.  Modeling the Control of Attention in Visual Workspaces , 2011, Hum. Factors.

[26]  N. Newcombe,et al.  Early Education for Spatial Intelligence: Why, What, and How , 2010 .

[27]  Heidrun Schumann,et al.  Space, time and visual analytics , 2010, Int. J. Geogr. Inf. Sci..

[28]  Jean-Paul Imbert,et al.  Attentional costs and failures in air traffic control notifications , 2014, Ergonomics.

[29]  P. Hancock,et al.  The Cambridge handbook of applied perception research , 2015 .

[30]  C Niessen,et al.  Modelling cognitive processes of experienced air traffic controllers. , 1999, Ergonomics.

[31]  Sara Irina Fabrikant,et al.  Towards an Understanding of Geovisualization with Dynamic Displays: Issues and Prospects , 2005, AAAI Spring Symposium: Reasoning with Mental and External Diagrams: Computational Modeling and Spatial Assistance.

[32]  Jeffrey M. Zacks,et al.  Understanding events : from perception to action , 2008 .

[33]  S. Kosslyn,et al.  Training generalized spatial skills , 2008, Psychonomic bulletin & review.

[34]  Alan Kennedy,et al.  Book Review: Eye Tracking: A Comprehensive Guide to Methods and Measures , 2016, Quarterly journal of experimental psychology.

[35]  Christophe Hurter,et al.  An Infovis approach to compare ATC comets : A theoretical basis for comparing visual entities , 2008 .

[36]  Andrew T. Duchowski,et al.  Entropy-based statistical analysis of eye movement transitions , 2014, ETRA.

[37]  Gennady L. Andrienko,et al.  Supporting visual exploration of massive movement data , 2008, AVI '08.

[38]  Harold Moellering,et al.  The potential uses of a computer animated film in the analysis of geographical patterns of traffic crashes , 1976 .

[39]  Gennady Andrienko,et al.  Novel Method to Measure Inference Affordance in Static Small-Multiple Map Displays Representing Dynamic Processes , 2008 .

[40]  Alan M. MacEachren,et al.  Animation and the Role of Map Design in Scientific Visualization , 1992 .

[41]  Tommy Strandvall,et al.  Eye Tracking in Human-Computer Interaction and Usability Research , 2009, INTERACT.