The detection of molecular gas in the central galaxies of cooling flow clusters

We present the detections of CO line emission in the central galaxy of 16 extreme cooling flow clusters using the IRAM 30-m and the JCMT 15-m telescopes. These detections of , , and are consistent with the presence of a substantial mass of warm molecular gas within 50-kpc radius of the central galaxy. We present limits on 13 other galaxies in similarly extreme cooling flow clusters. These results are consistent with the presence of a massive starburst in the central galaxy, which warms a population of cold gas clouds producing both optical and near-infrared emission lines and significant CO line emission. Curiously, our CO detections are restricted to the lower radio power central galaxies. These are the first detections of molecular gas in a cooling flow other than NGC 1275 in the Perseus cluster. As four of our targets have firm limits on their dust mass from SCUBA and the rest have crude limits from IRAS, we can calculate gas-to-dust ratios. Simple analysis indicates that the best secondary indicator of molecular gas is optical line luminosity. We review the implications of these results and the prospects for observations in the near future.

[1]  H. S. Ghataure,et al.  The radio structure of NGC 1275 , 1990 .

[2]  I. Browne,et al.  Optical properties of quasars – I. Observations , 1991 .

[3]  S. Bergh The NGC 1275 enigma , 1977 .

[4]  C. Crawford,et al.  Chandra imaging of the X-ray core of Abell 1795 , 2000, astro-ph/0011547.

[5]  Andrew C. Fabian Cooling Flows in Clusters of Galaxies , 1994 .

[6]  J. Young,et al.  Distributions of (C-13)O emission in the disks of late-type spiral galaxies , 1986 .

[7]  J. Hutchings,et al.  Complex Extended Line Emission in the cD Galaxy in Abell 2390 , 1999 .

[8]  D. York,et al.  The filaments of NGC 1275: a collision between a galaxy and an accretion flow? , 1983 .

[9]  M. Donahue,et al.  Hubble Space Telescope Observations of Vibrationally Excited Molecular Hydrogen in Cluster Cooling Flow Nebulae , 2000, astro-ph/0007062.

[10]  A. Edge,et al.  A ROSAT study of the cores of clusters of galaxies — I. Cooling flows in an X-ray flux-limited sample , 1998, astro-ph/9805122.

[11]  Cambridge,et al.  The physical conditions within dense cold clouds in cooling flows - II , 1994, astro-ph/0203052.

[12]  J. Dunlop,et al.  Detection of a large mass of dust in a radio galaxy at redshift z = 3.8 , 1994, Nature.

[13]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[14]  A. Fabian,et al.  On the soft X-ray spectrum of cooling flows , 2000, astro-ph/0010509.

[15]  H. Ferguson,et al.  Imaging and Spectroscopy of Arcs around the Most Luminous X-Ray Cluster, RX J1347.5–1145 , 1997, astro-ph/9709239.

[16]  R. J. Ivison,et al.  The detection of dust in the central galaxies of distant cooling‐flow clusters , 1999 .

[17]  P. P. van der Werf,et al.  CO (4-3) and Dust Emission in Two Powerful High-z Radio Galaxies, and CO Lines at High Redshifts , 1999, astro-ph/9908286.

[18]  Y. Fujita,et al.  CO (J = 1–0) Observation of the cD Galaxy of AWM 7: Constraints on the Evaporation of Molecular Gas , 1999, astro-ph/9911515.

[19]  S. Allen The properties of cooling flows in X-ray luminous clusters of galaxies , 2000, astro-ph/0002506.

[20]  A. Edge,et al.  Zwicky 3146: the most massive cooling flow? , 1994 .

[21]  The ROSAT Brightest Cluster Sample — III. Optical spectra of the central cluster galaxies , 1999, astro-ph/9903057.

[22]  Edward J. Shaya,et al.  Planetary Camera observations of NGC 1275 - Discovery of a central population of compact massive blue star clusters , 1992 .

[23]  A. Edge,et al.  Optical spectroscopy of the ROSAT X-ray brightest clusters. , 1992 .

[24]  R. Mushotzky,et al.  The discovery of large amounts of cold, X-ray absorbing matter in cooling flows , 1991 .

[25]  S. Allen,et al.  ASCA and ROSAT observations of nearby cluster cooling flows , 1999, astro-ph/9910188.

[26]  Raymond E. White,et al.  A Moderate Cluster Cooling Flow Model , 2000, astro-ph/0009173.

[27]  Molecular Gas in 3C 293: The First Detection of CO Emission and Absorption in a Fanaroff-Riley Type II Radio Galaxy , 1998, astro-ph/9810159.

[28]  C. L. Carilli,et al.  The Radio-to-Submillimeter Spectral Index as a Redshift Indicator , 1998, astro-ph/9812251.

[29]  An investigation of cooling flows and general cluster properties from an X-ray image deprojection analysis of 207 clusters of galaxies , 1997, astro-ph/9707269.

[30]  K. Menten,et al.  Detection of CO (2-1) and Radio Continuum Emission from the z = 4.4 QSO BRI 1335–0417 , 1999, astro-ph/9906135.

[31]  S. G. Kleinmann,et al.  The Properties and Environment of the Giant, Infrared-Luminous Galaxy IRAS 09104+4109 , 1988 .

[32]  J. Jernigan,et al.  X-ray imaging spectroscopy of Abell 1835 , 2000, astro-ph/0010658.

[33]  S. Allen Resolving the discrepancy between X-ray and gravitational lensing mass measurements for clusters of galaxies , 1997, astro-ph/9710217.

[34]  Patrick J. McCarthy,et al.  Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows , 1989 .

[35]  C. Crawford,et al.  ROSAT HRI observations of IRAS P09104+4109: a massive cooling flow , 1995, astro-ph/9505052.

[36]  D. Hines,et al.  The highly polarized hidden quasar IRAS 09104+4109 : a double-lobed radio source in a rich cluster , 1993 .

[37]  Paolo Giommi,et al.  The Deep X-Ray Radio Blazar Survey. I. Methods and First Results , 1998, astro-ph/9801024.

[38]  SELF-SIMILAR GRAVITATIONAL COLLAPSE IN STELLAR DYNAMICS , 2001 .

[39]  Beverly J. Smith,et al.  Far-infrared thermal emission from the inner cooling flow region of NGC 1275 , 1995 .

[40]  M. Donahue,et al.  Problems with Cold Clouds and Cooling Flows , 1995 .

[41]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[42]  M. Bremer,et al.  MOLECULAR HYDROGEN EMISSION IN COOLING FLOWS , 1997 .

[43]  Steven W. Allen,et al.  Starbursts in cooling flows: blue continua and emission-line nebulae in central cluster galaxies , 1995 .

[44]  J. P. Huchra,et al.  The ROSAT Brightest Cluster Sample — I. The compilation of the sample and the cluster log N—log S distribution , 1998, astro-ph/9812394.

[45]  B. McNamara,et al.  U-band polarimetry of the radio-aligned optical continuum in the abell 1795 cluster central galaxy , 1997 .

[46]  A. Fabian,et al.  Subsonic accretion of cooling gas in clusters of galaxies , 1977 .

[47]  F. Paerels,et al.  X-ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton , 2000, astro-ph/0010362.

[48]  A. Edge,et al.  ASCA and ROSAT observations of distant, massive cooling flows , 1996, astro-ph/9609201.

[49]  Arjun Dey,et al.  Dust, Gas, and the Evolutionary Status of the Radio Galaxy 8C 1435+635 at z = 4.25 , 1997, astro-ph/9709124.

[50]  E. I. Robson,et al.  Thermal and non-thermal emission from NGC 1275 (3C 84) , 1985 .

[51]  Simon J. E. Radford,et al.  Near-Infrared Spectroscopy and a Search for CO Emission in Three Extremely Luminous IRAS Sources: IRAS F09105+4108, IRAS F15307+3252, and PG 1634+706 , 1998, astro-ph/9806091.

[52]  On the lack of cold dust in IRAS P09104+4109 and IRAS F15307+3252: their spectral energy distributions and implications for finding dusty AGNs at high redshift , 2001, astro-ph/0104157.

[53]  J. Binney,et al.  Radiative regulation of gas flow within clusters of galaxies - A model for cluster X-ray sources , 1977 .

[54]  Constraints on molecular gas in cooling flows and powerful radio galaxies , 1994 .

[55]  E. Seaquist,et al.  Physical Conditions of the Molecular Gas in Seyfert Galaxies , 1998 .

[56]  W. Keel,et al.  Optical spectroscopy of radio galaxies in Abell clusters. 1: Redshifts and emission-line properties , 1995 .

[57]  E. Komatsu,et al.  Submillimeter Detection of the Sunyaev-Zeldovich Effect toward the Most Luminous X-Ray Cluster at z = 0.45 , 1999, astro-ph/9902351.

[58]  Chris Simpson,et al.  Molecular Hydrogen and Paα Emission in Cooling Flow Galaxies , 1997, astro-ph/9712247.