CMOS-NEMS Copper Switches Monolithically Integrated Using a 65 nm CMOS Technology

This work demonstrates the feasibility to obtain copper nanoelectromechanical (NEMS) relays using a commercial complementary metal oxide semiconductor (CMOS) technology (ST 65 nm) following an intra CMOS-MEMS approach. We report experimental demonstration of contact-mode nano-electromechanical switches obtaining low operating voltage (5.5 V), good ION/IOFF (103) ratio, abrupt subthreshold swing (4.3 mV/decade) and minimum dimensions (3.50 μm × 100 nm × 180 nm, and gap of 100 nm). With these dimensions, the operable Cell area of the switch will be 3.5 μm (length) × 0.2 μm (100 nm width + 100 nm gap) = 0.7 μm2 which is the smallest reported one using a top-down fabrication approach.

[1]  L. Castaner,et al.  Oxide charging and memory effects in suspended-gate FET , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[2]  M. Mehregany,et al.  Electromechanical Computing at 500 °C with Silicon Carbide. , 2010 .

[3]  R. Howe,et al.  Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit , 2011, 2011 International Electron Devices Meeting.

[4]  Tsu-Jae King Liu,et al.  NEM relay design for compact, ultra-low-power digital logic circuits , 2014, 2014 IEEE International Electron Devices Meeting.

[5]  Arantxa Uranga,et al.  Zero-level packaging of MEMS in standard CMOS technology , 2010 .

[6]  Jun‐Bo Yoon,et al.  A sub-1-volt nanoelectromechanical switching device. , 2013, Nature nanotechnology.

[7]  Elad Alon,et al.  Mechanical Computing Redux: Relays for Integrated Circuit Applications , 2010, Proceedings of the IEEE.

[8]  S. H. Park,et al.  Highly reliable Cu interconnect strategy for 10nm node logic technology and beyond , 2014, 2014 IEEE International Electron Devices Meeting.

[9]  C. Jahnes,et al.  Analysis and modeling of curvature in copper-based MEMS structures fabricated using CMOS interconnect technology , 2005, The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05..

[10]  Larry Epp,et al.  Electromechanical carbon nanotube switches for high-frequency applications. , 2006, Nano letters.

[11]  Jun‐Bo Yoon,et al.  3-terminal nanoelectromechanical switching device in insulating liquid media for low voltage operation and reliability improvement , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[12]  Arantxa Uranga,et al.  CMOS-MEMS switches based on back-end metal layers , 2014 .

[13]  G. Abadal,et al.  Monolithic CMOS MEMS Oscillator Circuit for Sensing in the Attogram Range , 2008, IEEE Electron Device Letters.

[14]  Jeroen De Coster,et al.  Submicron three-terminal SiGe-based electromechanical ohmic relay , 2014, 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS).

[15]  Tsu-Jae King Liu,et al.  Design and reliability of a micro-relay technology for zero-standby-power digital logic applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[16]  Tsu-Jae King Liu,et al.  Recent progress and challenges for relay logic switch technology , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[17]  G. Abadal,et al.  Integration of RF-MEMS resonators on submicrometric commercial CMOS technologies , 2009 .

[18]  Tsu-Jae King Liu,et al.  Nanoelectromechanical Switches for Low-Power Digital Computing , 2015, Micromachines.

[19]  Tsu-Jae King Liu,et al.  Perfectly Complementary Relay Design for Digital Logic Applications , 2010, IEEE Electron Device Letters.

[20]  M. Roukes,et al.  Low voltage nanoelectromechanical switches based on silicon carbide nanowires. , 2010, Nano letters.

[21]  Owen Y Loh,et al.  Nanoelectromechanical contact switches. , 2012, Nature nanotechnology.

[22]  Tsu-Jae King Liu,et al.  Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[23]  Xavier Borrisé,et al.  Electromechanical model of a resonating nano-cantilever-based sensor for high-resolution and high-sensitivity mass detection , 2001 .

[24]  Arantxa Uranga,et al.  Nanomechanical switches based on metal-insulator-metal capacitors from a standard complementary-metal-oxide semiconductor technology , 2014 .

[25]  Steven L. Wolfley,et al.  A nanomechanical switch for integration with CMOS logic , 2008 .

[26]  Tsu-Jae King Liu,et al.  4-terminal relay technology for complementary logic , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[27]  J. L. Muñoz-Gamarra,et al.  Integration of NEMS resonators in a 65nm CMOS technology , 2013 .

[28]  R. Howe,et al.  Laterally Actuated Platinum-Coated Polysilicon NEM Relays , 2013, Journal of microelectromechanical systems.

[29]  M. Mehregany,et al.  Electromechanical Computing at 500°C with Silicon Carbide , 2010, Science.

[30]  A. Knoll,et al.  Curved in-plane electromechanical relay for low power logic applications , 2013 .