High Dimensional Linear Regression via the R2-D2 Shrinkage Prior
暂无分享,去创建一个
[1] J. Griffin,et al. Inference with normal-gamma prior distributions in regression problems , 2010 .
[2] James G. Scott,et al. The horseshoe estimator for sparse signals , 2010 .
[3] E. George,et al. Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .
[4] E. George,et al. The Spike-and-Slab LASSO , 2018 .
[5] James G. Scott,et al. Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .
[6] N. Narisetty,et al. Bayesian variable selection with shrinking and diffusing priors , 2014, 1405.6545.
[7] Jaeyong Lee,et al. GENERALIZED DOUBLE PARETO SHRINKAGE. , 2011, Statistica Sinica.
[8] N. Pillai,et al. Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.
[9] Michael I. Jordan,et al. Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..
[10] Brian J Reich,et al. Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions , 2012, Journal of the American Statistical Association.
[11] J. S. Rao,et al. Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.
[12] N. L. Johnson,et al. Continuous Univariate Distributions. , 1995 .
[13] C. Carvalho,et al. Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective , 2014, 1408.0464.
[14] Christina Kendziorski,et al. Combined Expression Trait Correlations and Expression Quantitative Trait Locus Mapping , 2006, PLoS genetics.
[15] Andrew R. Barron,et al. Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.
[16] Nicholas G. Polson,et al. The Horseshoe+ Estimator of Ultra-Sparse Signals , 2015, 1502.00560.
[17] P. R. Nelson. Continuous Univariate Distributions Volume 2 , 1996 .
[18] Qing Li,et al. The Bayesian elastic net , 2010 .
[19] Chenlei Leng,et al. Bayesian adaptive Lasso , 2010, Annals of the Institute of Statistical Mathematics.
[20] Chris Hans. Bayesian lasso regression , 2009 .
[21] P. Miller. Applied asymptotic analysis , 2006 .
[22] A. U.S.,et al. Posterior consistency in linear models under shrinkage priors , 2013 .
[23] Kerstin Vogler,et al. Table Of Integrals Series And Products , 2016 .
[24] G. Casella,et al. The Bayesian Lasso , 2008 .
[25] T. J. Mitchell,et al. Bayesian Variable Selection in Linear Regression , 1988 .
[26] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[27] Daniel W. Lozier,et al. NIST Digital Library of Mathematical Functions , 2003, Annals of Mathematics and Artificial Intelligence.
[28] Lawrence Carin,et al. Negative Binomial Process Count and Mixture Modeling , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[29] David B. Dunson,et al. Generalized Beta Mixtures of Gaussians , 2011, NIPS.
[30] James G. Scott,et al. The Bayesian bridge , 2011, 1109.2279.
[31] Jerry L. Fields,et al. The Asymptotic Expansion of the Meijer G-Function* , 1972 .
[32] Johannes Schmidt-Hieber,et al. Conditions for Posterior Contraction in the Sparse Normal Means Problem , 2015, 1510.02232.
[33] James G. Scott,et al. Handling Sparsity via the Horseshoe , 2009, AISTATS.
[34] Donatello Telesca,et al. Nonlocal Priors for High-Dimensional Estimation , 2014, Journal of the American Statistical Association.