Information-Theoretic Incompleteness

We propose an improved definition of the complexity of a formal axiomatic system: this is now taken to be the minimum size of a self-delimiting program for enumerating the set of theorems of the formal system. Using this new definition, we show (a) that no formal system of complexity n can exhibit a specific object with complexity greater than n+c, and (b) that a formal system of complexity n can determine, at most, n + c scattered bits of the halting probability @w. We also present a short, self-contained proof of (b).

[1]  F. Browder Mathematical developments arising from Hilbert problems , 1976 .

[2]  C. Smorynski Logical Number Theory I , 1991 .

[3]  P. H. Andersen,et al.  Enigmas of Chance: An Autobiography , 1986 .

[4]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences: statistical considerations , 1969, JACM.

[5]  Gregory J. Chaitin,et al.  Information-theoretic computation complexity , 1974, IEEE Trans. Inf. Theory.

[6]  G. Chaitin Computational complexity and Gödel's incompleteness theorem , 1971, SIGA.

[7]  D. Ruelle Chance and Chaos , 2020 .

[8]  G. J. Chaitin,et al.  LISP program-size complexity III , 1992 .

[9]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[10]  Gregory J. Chaitin,et al.  Information-Theoretic Computational Complexity , 1974 .

[11]  R. L. Goodstein,et al.  Proof by reductio ad absurdum , 1948, The Mathematical Gazette.

[12]  James P. Jones,et al.  Register Machine Proof of the Theorem on Exponential Diophantine Representation of Enumerable Sets , 1984, J. Symb. Log..

[13]  John L. Casti,et al.  Searching for Certainty , 1990 .

[14]  G. Chaitin Program size, oracles, and the jump operation , 1977 .

[15]  Gregory J. Chaitin A RANDOM WALK IN ARITHMETIC , 1992 .

[16]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[17]  James P. Jones,et al.  Proof or recursive unsolvability of Hilbert's tenth problem , 1991 .

[18]  G. Hardy A Course of Pure Mathematics , 1910 .

[19]  Hans Rademacher,et al.  Enjoyment of Mathematics: Selections from Mathematics for the Amateur , 1957 .

[20]  Gregory J. Chaitin,et al.  ALGORITHMIC ENTROPY OF SETS , 1976 .

[21]  G. Chaitin Randomness and Mathematical Proof , 1975 .

[22]  Paul Davies,et al.  The Mind of God , 1992 .

[23]  Albert Einstein,et al.  The evolution of physics : from the early concepts to relativity and quanta , 1967 .

[24]  G. Pólya,et al.  How to Solve It. A New Aspect of Mathematical Method. , 1945 .

[25]  G. Chaitin Gödel's theorem and information , 1982 .

[26]  David Ruelle,et al.  Hasard et chaos , 1991 .

[27]  John McCarthy,et al.  LISP 1.5 Programmer's Manual , 1962 .

[28]  Z. W. Birnbaum Review: Mark Kac, Enigmas of chance. An autobiography , 1987 .

[29]  G. Chaitin Incompleteness theorems for random reals , 1987 .

[30]  J. C. Burkill,et al.  A mathematician's miscellany , 1954 .

[31]  Gregory J. Chaitin,et al.  Randomness in Arithmetic , 1988 .

[32]  Tony Barnard,et al.  Beyond numeracy , 1992, Nature.

[33]  Gregory J. Chaitin RANDOMNESS AND G ¨ ODEL'S THEOREM , 1986 .

[34]  M. Levin,et al.  MATHEMATICAL LOGIC FOR COMPUTER SCIENTISTS , 1974 .

[35]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness - Papers on Algorithmic Information Theory; 2nd Edition , 1987, World Scientific Series in Computer Science.

[36]  J ChaitinGregory A Theory of Program Size Formally Identical to Information Theory , 1975 .

[37]  Godfrey H. Hardy,et al.  A mathematician's apology , 1941 .

[38]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[39]  Gregory J. Chaitin LE HASARD DES NOMBRES , 1991 .

[40]  R. Courant What is mathematics? : an elementary approach to ideas and methods / R. Courant, Herbert Robbins , 1941 .

[41]  John D. Barrow,et al.  Theories of Everything , 1992 .

[42]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[43]  Gregory J. Chaitin Un Passeig aleatori a l'aritmètica , 1990 .

[44]  松本 英治 The New Scientist Guide to CHAOS : カオスの素顔 ニーナ・ホール , 1994 .

[45]  C. O. Oakley,et al.  The Enjoyment of Mathematics. , 1957 .

[46]  Gregory J. Chaitin,et al.  Information-Theoretic Limitations of Formal Systems , 1974, JACM.

[47]  G. Chaitin RANDOMNESS AND GÖDEL'S THEOREM , 1987 .

[48]  G. Pólya Mathematics and Plausible Reasoning , 1958 .