Characterization of nanostructured surfaces generated by reconstitution of the porin MspA from Mycobacterium smegmatis.

Nanostructures with long-term stability at the surface of gold electrodes are generated by reconstituting the porin MspA from Mycobacterium smegmatis into a specially designed monolayer of long-chain lipid surfactant on gold. Tailored surface coverage of gold electrodes with long-chain surfactants is achieved by electrochemically assisted deposition of organic thiosulfates (Bunte salts). The subsequent reconstitution of the octameric-pore MspA is guided by its extraordinary self-assembling properties. Importantly, electrochemical reduction of copper(II) yields copper nanoparticles within the MspA nanopores. Electrochemical impedance spectroscopy, reflection electron microscopy, and atomic force microscopy (AFM) show that: 1) the MspA pores within the self-assembled monolayer (SAM) are monodisperse and electrochemically active, 2) MspA reconstitutes in SAMs and with a 10-nm thickness, 3) AFM is a suitable method to detect pores within SAMs, and 4) the electrochemical reduction of Cu2+ to Cu0 under overpotential conditions starts within the MspA pores.

[1]  M. Niederweis,et al.  Nanoarray‐Surfaces by Reconstitution of the Porin MspA into Stabilized Long‐Chain‐Lipid‐Monolayers at a Gold‐Surface , 2006 .

[2]  M. Niederweis,et al.  Topology of the Porin MspA in the Outer Membrane of Mycobacterium smegmatis* , 2006, Journal of Biological Chemistry.

[3]  I. Willner,et al.  Magneto-switchable single-electron charging of Au-nanoparticles using hydrophobic magnetic nanoparticles. , 2006, Chemical communications.

[4]  Zhichuan J. Xu,et al.  From aqueous to organic: A step-by-step strategy for shape evolution of gold nanoparticles , 2005 .

[5]  R. Naik,et al.  Synthesis of gold nanoparticles using multifunctional peptides. , 2005, Small.

[6]  H. Engelhardt,et al.  The growth rate of Mycobacterium smegmatis depends on sufficient porin‐mediated influx of nutrients , 2005, Molecular microbiology.

[7]  P. Unwin,et al.  Molecular ordering and 2D conductivity in ultrathin poly(3-hexylthiophene)/gold nanoparticle composite films. , 2005, The journal of physical chemistry. B.

[8]  W. Knoll,et al.  Current‐Voltage Characterisation of Monolayer‐Supported Au‐Nanoclusters by Scanning Tunnelling Microscopy under Ambient Conditions , 2005 .

[9]  N. Jana,et al.  Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. , 2005, Small.

[10]  Daniel A. Zweifel,et al.  Sulfide-Arrested Growth of Gold Nanorods. , 2005, Chemistry of materials : a publication of the American Chemical Society.

[11]  M. Brust,et al.  Molecular recognition by calix[4]arene-modified gold nanoparticles in aqueous solution. , 2005, Angewandte Chemie.

[12]  T. Coradin,et al.  Preparation and characterization of metal (Au)– and bimetallic alloys (AuNi)–gelatin nanocomposites , 2005 .

[13]  Rodolfo J. Romañach,et al.  Atomic force measurements of 16-mercaptohexadecanoic acid and its salt with CH , 2005 .

[14]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[15]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[16]  M. Miki-Yoshida,et al.  Noble-metal nanoparticles directly conjugated to globular proteins. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[17]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[18]  H. Kojima,et al.  Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  Georg E. Schulz,et al.  The Structure of a Mycobacterial Outer-Membrane Channel , 2004, Science.

[20]  M. Niederweis,et al.  Reconstitution of a Porin from Mycobacterium smegmatis at HOPG covered with hydrophobic host layers , 2004 .

[21]  M. Niederweis,et al.  Mycobacterial porins – new channel proteins in unique outer membranes , 2003, Molecular microbiology.

[22]  G. Schmid,et al.  Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities , 2003 .

[23]  G. S. Ferguson,et al.  Electrochemical Self-Assembly of Monolayers from Alkylthiosulfates on Gold , 2003 .

[24]  R. Graf,et al.  1H fast MAS NMR studies of hydrogen-bonding interactions in self-assembled monolayers. , 2003, Journal of the American Chemical Society.

[25]  H. Engelhardt,et al.  The Core of the Tetrameric Mycobacterial Porin MspA Is an Extremely Stable β-Sheet Domain* , 2003, The Journal of Biological Chemistry.

[26]  T. Hayakawa,et al.  Three-Dimensional Nanoscale Alignment of Metal Nanoparticles Using Block Copolymer Films as Nanoreactors , 2003 .

[27]  K. Krischer,et al.  The Fe(CN)63−/Fe(CN)64− charge transfer reaction on Au(111) revisited in the presence and absence of a two-dimensional, condensed organic film , 2003 .

[28]  Zhenxin Wang,et al.  Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. , 2003, Angewandte Chemie.

[29]  H. Engelhardt,et al.  A Tetrameric Porin Limits the Cell Wall Permeability ofMycobacterium smegmatis * , 2002, The Journal of Biological Chemistry.

[30]  C. Meuse,et al.  Self-Assembled Monolayers of Methyl 1-Thiahexa(ethylene oxide) for the Inhibition of Protein Adsorption , 2002 .

[31]  A. Beatty,et al.  "Total Synthesis" Supramolecular Style: Design and Hydrogen-Bond-Directed Assembly of Ternary Supermolecules. , 2001, Angewandte Chemie.

[32]  P. Gütlich,et al.  Carbon Nanotube Bags: Catalytic Formation, Physical Properties, Two‐Dimensional Alignment and Geometric Structuring of Densely Filled Carbon Tubes , 2001 .

[33]  R. Murray,et al.  The dynamics of electron self-exchange between nanoparticles. , 2001, Journal of the American Chemical Society.

[34]  H. Engelhardt,et al.  MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis , 2001, Molecular microbiology.

[35]  M. Niederweis,et al.  Selective extraction and purification of a mycobacterial outer membrane protein. , 2000, Analytical biochemistry.

[36]  R. Bruce Lennox,et al.  Potential-Induced Defects in n-Alkanethiol Self-Assembled Monolayers Monitored by Impedance Spectroscopy , 2000 .

[37]  D. Feldheim,et al.  Electronic and Optical Properties of Chemically Modified Metal Nanoparticles and Molecularly Bridged Nanoparticle Arrays , 2000 .

[38]  R. Bruce Lennox,et al.  Stability of ω-Functionalized Self-Assembled Monolayers as a Function of Applied Potential , 2000 .

[39]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[40]  G. Schmid,et al.  Geordnete zweidimensionale Monolagen von Au55‐Clustern , 2000 .

[41]  Schmid,et al.  Ordered Two-Dimensional Monolayers of Au(55) Clusters. , 2000, Angewandte Chemie.

[42]  M. Rajamäki,et al.  Organic Thiosulfates (Bunte Salts): Novel Surface-Active Sulfur Compounds for the Preparation of Self-Assembled Monolayers on Gold , 1999 .

[43]  Kazuo Yano,et al.  Single-electron memory for giga-to-tera bit storage , 1999, Proc. IEEE.

[44]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[45]  D. Feldheim,et al.  pH-Gated Single-Electron Tunneling in Chemically Modified Gold Nanoclusters , 1998 .

[46]  R. Slayden,et al.  Mycolic acids: structure, biosynthesis and physiological functions. , 1998, Progress in lipid research.

[47]  M. Pileni Colloidal self-assemblies used as templates to control size, shape and self-organization of nanoparticles , 1998 .

[48]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[49]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[50]  E. Kruus,et al.  Kinetics of Formation of Long-Chain n-Alkanethiolate Monolayers on Polycrystalline Gold , 1997 .

[51]  O. Cavalleri,et al.  Growth manipulation in electrodeposition with self-assembled monolayers , 1997 .

[52]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[53]  Christopher J. Kiely,et al.  From monolayers to nanostructured materials: an organic chemist's view of self-assembly , 1996 .

[54]  H. Nikaido,et al.  Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? , 1995, Antimicrobial agents and chemotherapy.

[55]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[56]  C. Schiller,et al.  Distortions of high frequency electrode impedance: Their causes and how to avoid them , 1984 .

[57]  M. Niederweis,et al.  Purification of porins from Mycobacterium smegmatis. , 2003, Methods in molecular biology.

[58]  K. Müllen,et al.  Poly-para-phenylene-ethynylene assemblies for a potential molecular nanowire: an SFM study , 1998 .

[59]  H. Nikaido,et al.  The envelope of mycobacteria. , 1995, Annual review of biochemistry.

[60]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .