An Ultralow-Power Current-Reused Direct-Conversion Bluetooth-Low-Energy Receiver Front-End in 40-nm CMOS

An ultralow-power direct-conversion Bluetooth-low-energy (BLE) receiver (RX) front-end that employs current-reuse and subthreshold techniques is presented. A stacked and self-biased low-noise amplifier (LNA) with active balun consumes <inline-formula> <tex-math notation="LaTeX">$400~\mu \text{W}$ </tex-math></inline-formula> and achieves a noise figure (NF) of 3.2-dB and a high gain (programmable from 18 to 31 dB), meeting the system specifications over the process, supply voltage, and temperature (PVT) variations. The RX front-end has a measured integrated NF of 5.2 dB from 50 KHz to 1 MHz that corresponds to a sensitivity of −95.1 dBm. At an RX gain of 47 dB, IIP3 was measured at −19.7 dBm. The LC VCO operates at twice the carrier frequency with a tuning range of 4.55 to 5.15 GHz in an integer-N phase-locked loop (PLL). An ultralow-power CML divider is used to generate the LO <inline-formula> <tex-math notation="LaTeX">$I/Q$ </tex-math></inline-formula>. The integrated phase noise (IPN) of the LO at 2.4 GHz is 0.83° with spot phase noise of −119.9 dBc/Hz at 3 MHz frequency offset. The PLL is entirely placed inside the VCO inductor resulting in an overall die area reduction of 8%. A 6-<inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> automatic dc offset-calibrator avoids saturation of consecutive baseband blocks. Multiple <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula>-level feedback control loops are used in the design to make it robust over PVT variations. The RX front-end prototype is implemented in a 40-nm LP CMOS process and occupies a silicon area of 0.7 mm <sup>2</sup>.

[1]  Antonio Liscidini,et al.  Sub-mW Current Re-Use Receiver Front-End for Wireless Sensor Network Applications , 2015, IEEE Journal of Solid-State Circuits.

[2]  Edgar Sanchez-Sinencio,et al.  A 540 µW RF wireless receiver assisted by RF blocker energy harvesting for IoT applications with +18 dBm OB-IIP3 , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[3]  Ranran Zhou,et al.  A 1.9-mW 750-kb/s 2.4-GHz F-OOK Transmitter With Symmetric FM Template and High-Point Modulation PLL , 2017, IEEE Journal of Solid-State Circuits.

[4]  Krishnamurthy Soumyanath,et al.  A 2.5GHz 32nm 0.35mm2 3.5dB NF −5dBm P1dB fully differential CMOS push-pull LNA with integrated 34dBm T/R switch and ESD protection , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Kathleen Philips,et al.  24.1 A 770pJ/b 0.85V 0.3mm2 DCO-based phase-tracking RX featuring direct demodulation and data-aided carrier tracking for IoT applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  Bumman Kim,et al.  A Wideband CMOS Noise-Canceling Low-Noise Amplifier With High Linearity , 2015, IEEE Microwave and Wireless Components Letters.

[7]  Shen-Iuan Liu,et al.  CMOS wideband amplifiers using multiple inductive-series peaking technique , 2005, IEEE Journal of Solid-State Circuits.

[8]  A. Fard,et al.  More on the $1/{\rm f}^{2}$ Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[9]  Kenichi Okada,et al.  An ADPLL-centric bluetooth low-energy transceiver with 2.3mW interference-tolerant hybrid-loop receiver and 2.9mW single-point polar transmitter in 65nm CMOS , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[10]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[11]  K.S.J. Pister,et al.  Low-Power 2.4-GHz Transceiver With Passive RX Front-End and 400-mV Supply , 2006, IEEE Journal of Solid-State Circuits.

[12]  Asad A. Abidi Direct-conversion radio transceivers for digital communications , 1995 .

[13]  Shahriar Mirabbasi,et al.  On the design of combined LNA-VCO-mixer for low-power and low-voltage CMOS receiver front-ends , 2016, Microelectron. J..

[14]  Chewn-Pu Jou,et al.  A Bluetooth Low-Energy Transceiver With 3.7-mW All-Digital Transmitter, 2.75-mW High-IF Discrete-Time Receiver, and TX/RX Switchable On-Chip Matching Network , 2017, IEEE Journal of Solid-State Circuits.

[15]  Sung Min Park,et al.  1.25-Gb/s regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications , 2004, IEEE Journal of Solid-State Circuits.

[16]  James K. Cavers,et al.  Adaptive compensation for imbalance and offset losses in direct conversion transceivers , 1993 .

[17]  Behzad Razavi,et al.  A Low-Power CMOS Receiver for 5 GHz WLAN , 2015, IEEE Journal of Solid-State Circuits.

[18]  Fu-Lung Hsueh,et al.  A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[19]  Ada S. Y. Poon,et al.  An RF-Powered FDD Radio for Neural Microimplants , 2017, IEEE Journal of Solid-State Circuits.

[20]  Antonio Liscidini,et al.  An Intuitive Analysis of Phase Noise Fundamental Limits Suitable for Benchmarking LC Oscillators , 2014, IEEE Journal of Solid-State Circuits.

[21]  Yoshihiro Hayashi,et al.  13.4 A 6.3mW BLE transceiver embedded RX image-rejection filter and TX harmonic-suppression filter reusing on-chip matching network , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[22]  Ilku Nam,et al.  A Wideband CMOS Low Noise Amplifier Employing Noise and IM2 Distortion Cancellation for a Digital TV Tuner , 2009, IEEE J. Solid State Circuits.

[23]  J.C. Leete,et al.  Analysis and Optimization of Current-Driven Passive Mixers in Narrowband Direct-Conversion Receivers , 2009, IEEE Journal of Solid-State Circuits.

[24]  Michail Papamichail,et al.  A 10 mW Bluetooth Low-Energy Transceiver With On-Chip Matching , 2015, IEEE Journal of Solid-State Circuits.

[25]  Shahriar Mirabbasi,et al.  A 980μW 5.2dB-NF current-reused direct-conversion bluetooth-low-energy receiver in 40nm CMOS , 2017, 2017 IEEE Custom Integrated Circuits Conference (CICC).

[26]  Marc Girod-Genet,et al.  Unified Data Model for Wireless Sensor Network , 2015, IEEE Sensors Journal.

[27]  R. Dutton,et al.  Minimum achievable phase noise of RC oscillators , 2005, IEEE Journal of Solid-State Circuits.

[28]  Pietro Andreani,et al.  A Push–Pull Class-C CMOS VCO , 2013, IEEE Journal of Solid-State Circuits.

[29]  Melanie Hartmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[30]  J.W. Haslett,et al.  Analysis and design of HBT Cherry-Hooper amplifiers with emitter-follower feedback for optical communications , 2004, IEEE Journal of Solid-State Circuits.