New techniques for exact and approximate dynamic closest-point problems

Let <?Pub Fmt italic>S<?Pub Fmt /italic> be a set of <?Pub Fmt italic>n<?Pub Fmt /italic> points in <inline-equation> <f> <sc><blkbd>R<sup><it>D</it></sup></blkbd></sc></f> </inline-equation>. It is shown that a range tree can be used to find an <inline-equation> <f> <it>L<inf>∞</inf></it></f> </inline-equation>-nearest neighbor in <italic>S</italic> of any query point, in <italic>O</italic>((log<italic>n</italic>)<supscrpt>D−1</supscrpt> loglog<italic>n</italic>) time. This data structure has size <italic>O</italic>(<italic>n</italic>(log<italic>n</italic>)<supscrpt>D−1</supscrpt>) and an amortized update time of <italic>O</italic>((log<italic>n</italic>)<supscrpt>D−1</supscrpt> loglog<italic>n</italic>). This result is used to solve the (1+ ε)-approximate <italic>L</italic><subscrpt>2</subscrpt>-nearest neighbor problem within the same bounds. In this problem, for any query point <italic>p</italic>, a point <inline-equation> <f>∈</f> </inline-equation> is computed such that the euclidean distance between <italic>p</italic> and <italic>q</italic> is at most (1+ε) times the euclidean distance between <italic>p</italic> and its true nearest neighbor. This is the first dynamic data structure for this problem having close to linear size and polylogarithmic query and update times. New dynamic data structures are given that maintain a closest pair of <italic>S</italic>. For <italic>D</italic> ≥ 3, a structure of size <italic>O</italic>(<italic>n</italic>) is presented with amortized update time <italic>O</italic>((log<italic>n</italic>)<supscrpt>D−</supscrpt> loglog<italic>n</italic>). For <italic>D</italic> = 2 and any non-negative integer constant <italic>k</italic>, structures of size <italic>O</italic>(<italic>n</italic>log<italic>n</italic>/(loglog<italic>n</italic>)<supscrpt><italic>k</italic></supscrpt>) (resp. <italic>O</italic>(<italic>n</italic>)) are presented having an amortized update time of <italic>O</italic>(log<italic>n</italic>loglog<italic>n</italic>) (resp. <italic>O</italic>((log<italic>n</italic>)<supscrpt>2</supscrpt>/(loglog<italic>n</italic>)<supscrpt>k</supscrpt>)). Previously, no deterministic linear size data structure having polylogarithmic update time was known for this problem.

[1]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[2]  Jon Louis Bentley,et al.  Decomposable Searching Problems , 1979, Inf. Process. Lett..

[3]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[4]  Herbert Edelsbrunner,et al.  Rectangular Point Location in d Dimensions with Applications , 1986, Comput. J..

[5]  Jeffrey S. Salowe Shallow Interdistnace Selection and Interdistance Enumeration , 1991, WADS.

[6]  Michiel H. M. Smid,et al.  An optimal algorithm for the on-line closest-pair problem , 1992, SCG '92.

[7]  Michael Ian Shamos,et al.  Divide-and-conquer in multidimensional space , 1976, STOC '76.

[8]  Jeffrey S. Salowe Enumerating interdistances in space , 1992, Int. J. Comput. Geom. Appl..

[9]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[10]  Michiel H. M. Smid,et al.  Randomized data structures for the dynamic closest-pair problem , 1998, SODA '93.

[11]  A.V. Kovalyov An O , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[12]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[13]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[14]  Christian Schwarz,et al.  Data structures and algorithms for the dynamic closest pair problem , 1993 .

[15]  Marshall W. Bern,et al.  Approximate Closest-Point Queries in High Dimensions , 1993, Inf. Process. Lett..

[16]  Michiel H. M. Smid,et al.  Simple Randomized Algorithms for Closest Pair Problems , 1995, Nord. J. Comput..

[17]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[18]  Michiel H. M. Smid Rectangular Point Location and the Dynamic Closest Pair Problem , 1991, ISA.

[19]  George S. Lueker,et al.  Adding range restriction capability to dynamic data structures , 1985, JACM.

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[22]  M. Smid Maintaining the minimal distance of a point set in less than linear time , 1990 .

[23]  Kenneth J. Supowit,et al.  New techniques for some dynamic closest-point and farthest-point problems , 1990, SODA '90.

[24]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[25]  Michiel H. M. Smid Maintaining the minimal distance of a point set in polylogarithmic time , 1991, SODA '91.