The Habitat of the Nascent Chicxulub Crater

An expanded sedimentary section provides an opportunity to elucidate conditions in the nascent Chicxulub crater during the hours to millennia after the Cretaceous‐Paleogene (K‐Pg) boundary impact. The sediments were deposited by tsunami followed by seiche waves as energy in the crater declined, culminating in a thin hemipelagic marlstone unit that contains atmospheric fallout. Seiche deposits are predominantly composed of calcite formed by decarbonation of the target limestone during impact followed by carbonation in the water column. Temperatures recorded by clumped isotopes of these carbonates are in excess of 70°C, with heat likely derived from the central impact melt pool. Yet, despite the turbidity and heat, waters within the nascent crater basin soon became a viable habitat for a remarkably diverse cross section of the food chain. The earliest seiche layers deposited with days or weeks of the impact contain earliest Danian nannoplankton and dinocyst survivors. The hemipelagic marlstone representing the subsequent years to a few millennia contains a nearly monogeneric calcareous dinoflagellate resting cyst assemblage suggesting deteriorating environmental conditions, with one interpretation involving low light levels in the impact aftermath. At the same horizon, microbial fossils indicate a thriving bacterial community and unique phosphatic fossils including appendages of pelagic crustaceans, coprolites and bacteria‐tunneled fish bone, suggesting that this rapid recovery of the base of the food chain may have supported the survival of larger, higher trophic‐level organisms. The extraordinarily diverse fossil assemblage indicates that the crater was a unique habitat in the immediate impact aftermath, possibly as a result of heat and nutrients supplied by hydrothermal activity.

[1]  J. Morgan,et al.  Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact , 2020 .

[2]  J. Morgan,et al.  Organic matter from the Chicxulub crater exacerbated the K–Pg impact winter , 2020, Proceedings of the National Academy of Sciences.

[3]  J. Morgan,et al.  Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction , 2020, Proceedings of the National Academy of Sciences.

[4]  E. al.,et al.  Rapid macrobenthic diversification and stabilization after the end-Cretaceous mass extinction event , 2020, Geology.

[5]  J. Morgan,et al.  Probing the hydrothermal system of the Chicxulub impact crater , 2020, Science Advances.

[6]  J. Morgan,et al.  Global K‐Pg Layer Deposited From a Dust Cloud , 2020, Geophysical Research Letters.

[7]  R. Garcia,et al.  Causes and Climatic Consequences of the Impact Winter at the Cretaceous‐Paleogene Boundary , 2020, Geophysical Research Letters.

[8]  J. Morgan,et al.  Microbial life in the nascent Chicxulub crater , 2020, Geology.

[9]  P. Bown,et al.  On impact and volcanism across the Cretaceous-Paleogene boundary , 2020, Science.

[10]  N. Dauphas,et al.  Nucleosynthetic, radiogenic and stable strontium isotopic variations in fine- and coarse-grained refractory inclusions from Allende , 2019, Geochimica et Cosmochimica Acta.

[11]  J. Morgan,et al.  The first day of the Cenozoic , 2019, Proceedings of the National Academy of Sciences.

[12]  C. Lowery,et al.  Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater , 2019, Geology.

[13]  A. Colman,et al.  Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral‐Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation , 2019, Geochemistry, Geophysics, Geosystems.

[14]  L. Lammers,et al.  Magnesian calcite solid solution thermodynamics inferred from authigenic deep-sea carbonate , 2019, Geochimica et Cosmochimica Acta.

[15]  P. Manning,et al.  A seismically induced onshore surge deposit at the KPg boundary, North Dakota , 2019, Proceedings of the National Academy of Sciences.

[16]  G. Keller,et al.  U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction , 2019, Science.

[17]  S. Self,et al.  The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary , 2019, Science.

[18]  P. Halodová,et al.  Fossil bacteria in Cenomanian–Turonian phosphate nodules and coprolites, Bohemian Cretaceous Basin, Czech Republic , 2018 .

[19]  H. Hollund,et al.  Dead and buried? Variation in post-mortem histories revealed through histotaphonomic characterisation of human bone from megalithic graves in Sweden , 2018, PloS one.

[20]  L. Hecht,et al.  The reaction of carbonates in contact with laser‐generated, superheated silicate melts: Constraining impact metamorphism of carbonate‐bearing target rocks , 2018, Meteoritics & Planetary Science.

[21]  J. Morgan,et al.  Drilling the K-Pg Impact Crater: IODP-ICDP Expedition 364 Results , 2018 .

[22]  C. Slomp,et al.  Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact , 2018, Geology.

[23]  J. Morgan,et al.  Rapid Recovery of Life at Ground Zero of the End Cretaceous Mass Extinction , 2018, Nature.

[24]  B. Faircloth,et al.  Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary , 2018, Nature Ecology & Evolution.

[25]  B. Passey,et al.  Influence of water on clumped-isotope bond reordering kinetics in calcite , 2018 .

[26]  N. Artemieva,et al.  Quantifying the Release of Climate‐Active Gases by Large Meteorite Impacts With a Case Study of Chicxulub , 2017 .

[27]  A. Rosas,et al.  Characterizing hyena coprolites from two latrines of the Iberian Peninsula during the Early Pleistocene: Gran Dolina (Sierra de Atapuerca, Burgos) and la Mina (Barranc de la Boella, Tarragona) , 2017 .

[28]  B. Jones Review of aragonite and calcite crystal morphogenesis in thermal spring systems , 2017 .

[29]  Stefan Petri,et al.  Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous , 2017 .

[30]  Gareth S. Collins,et al.  The formation of peak rings in large impact craters , 2016, Science.

[31]  Peter Fratzl,et al.  Ultrastructural and developmental features of the tessellated endoskeleton of elasmobranchs (sharks and rays) , 2016, Journal of anatomy.

[32]  Yukimasa Adachi,et al.  Global climate change driven by soot at the K-Pg boundary as the cause of the mass extinction , 2016, Scientific Reports.

[33]  R. Goodhue,et al.  Chemostratigraphy of the Sudbury impact basin fill: Volatile metal loss and post-impact evolution of a submarine impact basin , 2016 .

[34]  D. LaJeunesse,et al.  SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. , 2016, Micron.

[35]  W. Patterson,et al.  Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar , 2015, Scientific Reports.

[36]  C. Pott,et al.  Coprolites of Late Triassic carnivorous vertebrates from Poland: an integrative approach , 2015 .

[37]  R. Norris,et al.  New Age of Fishes initiated by the Cretaceous−Paleogene mass extinction , 2015, Proceedings of the National Academy of Sciences.

[38]  E. Hiatt,et al.  Sedimentary phosphate and associated fossil bacteria in a Paleoproterozoic tidal flat in the 1.85 Ga Michigamme Formation, Michigan, USA , 2015 .

[39]  Alyssa Y. Stark,et al.  Mechanical Properties of the Chitin-Calcium-Phosphate "Clam Shrimp" Carapace (Branchiopoda: Spinicaudata): Implications for Taphonomy and Fossilization , 2015 .

[40]  G. Prosser,et al.  Dynamic weakening along incipient low-angle normal faults in pelagic limestones (Southern Apennines, Italy) , 2015, Journal of the Geological Society.

[41]  B. Passey,et al.  Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of bond reordering and recrystallization , 2014 .

[42]  Felix Repp,et al.  Remodeling in bone without osteocytes: Billfish challenge bone structure–function paradigms , 2014, Proceedings of the National Academy of Sciences.

[43]  Huanting Hu,et al.  Triple oxygen isotopes in biogenic and sedimentary carbonates , 2014 .

[44]  R. Norris,et al.  Resilience of Pacific pelagic fish across the Cretaceous/Palaeogene mass extinction , 2014 .

[45]  B. Passey,et al.  Temperature limits for preservation of primary calcite clumped isotope paleotemperatures , 2014 .

[46]  Stefan Schouten,et al.  Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary , 2014, Proceedings of the National Academy of Sciences.

[47]  H. Durand-Manterola,et al.  Assessments of the energy, mass and size of the Chicxulub Impactor , 2014, 1403.6391.

[48]  Q. Yao,et al.  Formation of elongated calcite mesocrystals and implication for biomineralization , 2013 .

[49]  Nicolas Menguy,et al.  Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms , 2013 .

[50]  C. Collettini,et al.  Thermal decomposition along natural carbonate faults during earthquakes , 2013 .

[51]  Charles S. Cockell,et al.  Impact-generated hydrothermal systems on Earth and Mars , 2013 .

[52]  F. Maggi The settling velocity of mineral, biomineral, and biological particles and aggregates in water , 2013 .

[53]  I. Estève,et al.  Nanometer‐scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco) , 2013, Geobiology.

[54]  P. Barton,et al.  GEOPHYSICAL CHARACTERIZATION OF THE CHICXULUB IMPACT CRATER , 2013 .

[55]  C. Ascaso,et al.  Calcium Phosphate Preservation of Faecal Bacterial Negative Moulds in Hyaena Coprolites , 2013 .

[56]  J. Bailey,et al.  The role of microbes in the formation of modern and ancient phosphatic mineral deposits , 2012, Front. Microbio..

[57]  P. Pearson,et al.  Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis , 2012, Paleobiology.

[58]  M. Dean,et al.  Comparison of structural, architectural and mechanical aspects of cellular and acellular bone in two teleost fish , 2012, Journal of Experimental Biology.

[59]  E. Watson,et al.  Oxygen isotope fractionation between calcite and fluid as a function of growth rate and temperature: An in situ study , 2012 .

[60]  F. Vanhaecke,et al.  An emplacement mechanism for the mega‐block zone within the Chicxulub crater, (Yucatán, Mexico) based on chemostratigraphy , 2012 .

[61]  R. Norris,et al.  A role for chance in marine recovery from the end-Cretaceous extinction , 2011 .

[62]  F. Garcia-Pichel,et al.  Prevalence of Ca2+-ATPase-Mediated Carbonate Dissolution among Cyanobacterial Euendoliths , 2011, Applied and Environmental Microbiology.

[63]  J. Ferry,et al.  Formation of dolomite at 40–80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry , 2011 .

[64]  E. Barkan,et al.  Variations of 17O/16O and 18O/16O in meteoric waters , 2010 .

[65]  I. Stober,et al.  Fluids in the upper continental crust , 2010 .

[66]  M. Patzkowsky,et al.  Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary , 2010 .

[67]  Elisabetta Pierazzo,et al.  The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary , 2010, Science.

[68]  G. G. Stokes On the Effect of the Internal Friction of Fluids on the Motion of Pendulums , 2009 .

[69]  J. Morgan,et al.  Modeling the formation of the K-Pg boundary layer , 2009 .

[70]  Adam P. Summers,et al.  The material properties of acellular bone in a teleost fish , 2009, Journal of Experimental Biology.

[71]  C. Rodriguez-Navarro,et al.  Thermal decomposition of calcite: Mechanisms of formation and textural evolution of CaO nanocrystals , 2009 .

[72]  M. Friedman Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction , 2009, Proceedings of the National Academy of Sciences.

[73]  P. Schulte,et al.  A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic , 2009 .

[74]  T. Yancey,et al.  Carbonate accretionary lapilli in distal deposits of the Chicxulub impact event , 2008 .

[75]  M. Warner,et al.  Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater , 2008 .

[76]  David A. Kring,et al.  The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary , 2007 .

[77]  John M. Eiler,et al.  “Clumped-isotope” geochemistry—The study of naturally-occurring, multiply-substituted isotopologues , 2007 .

[78]  J. Zachos,et al.  Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction , 2006 .

[79]  John M. Eiler,et al.  13 C- 18 O bonds in carbonate minerals: A new kind of paleothermometer , 2006 .

[80]  D. Kring,et al.  Numerical modeling of impact‐induced hydrothermal activity at the Chicxulub crater , 2006 .

[81]  John W. Morse,et al.  Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C , 2005 .

[82]  D. Kring Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (~24km) and Chicxulub (~180km) impact craters , 2005 .

[83]  T. Furuno,et al.  Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth's history , 2004 .

[84]  D. Kring,et al.  Hydrothermal alteration in the core of the Yaxcopoil‐1 borehole, Chicxulub impact structure, Mexico , 2004 .

[85]  L. Alegret,et al.  Foraminiferal biostratigraphy and paleoenvironmental reconstruction at the Yaxcopoil‐1 drill hole, Chicxulub crater, Yucatán Peninsula , 2004 .

[86]  V. Lüders,et al.  Fluid inclusion evidence for impact‐related hydrothermal fluid and hydrocarbon migration in Creataceous sediments of the ICDP‐Chicxulub drill core Yax‐1 , 2004 .

[87]  A. Wittmann,et al.  Composition of impact melt particles and the effects of post‐impact alteration in suevitic rocks at the Yaxcopoil‐1 drill core, Chicxulub crater, Mexico , 2004 .

[88]  K. Goto,et al.  Evidence for ocean water invasion into the Chicxulub crater at the Cretaceous/Tertiary boundary , 2004 .

[89]  A. Wittmann,et al.  Geochemistry of drill core samples from Yaxcopoil‐1, Chicxulub impact crater, Mexico , 2004 .

[90]  J. Wilkinson,et al.  Chicxulub: Testing for post‐impact hydrothermal input into the Tertiary ocean , 2003 .

[91]  K. Farley,et al.  An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He , 2003 .

[92]  Pascal Lee,et al.  The impact crater as a habitat: effects of impact processing of target materials. , 2003, Astrobiology.

[93]  A. Brack,et al.  Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[94]  S. Squyres,et al.  Hydrothermal systems associated with martian impact craters , 2002 .

[95]  Ellen Thomas,et al.  Upper Cretaceous and lower Paleogene benthic Foraminifera from northeastern Mexico , 2001 .

[96]  U. Schärer,et al.  Fast back-reactions of shock-released CO 2 from carbonates: An experimental approach , 2001 .

[97]  P. Fullagar,et al.  Evidence for a small (∼0.000 030) but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous-Tertiary boundary , 2001 .

[98]  T. Jones,et al.  Extraterrestrial impacts and wildfires , 2000 .

[99]  J. Morgan,et al.  Chicxulub: The third dimension of a multi-ring impact basin , 1999 .

[100]  J. Smit,et al.  Dinoflagellate-based sea surface temperature reconstructions across the Cretaceous–Tertiary boundary , 1998 .

[101]  Sang-Tae Kim,et al.  Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates , 1997 .

[102]  D. Kring The dimensions of the Chicxulub impact crater and impact melt sheet , 1995 .

[103]  R. C. Srivastava,et al.  Hypercanes: A possible link in global extinction scenarios , 1995 .

[104]  B. Stankiewicz,et al.  FOSSIL CHARCOAL IN CRETACEOUS-TERTIARY BOUNDARY STRATA : EVIDENCE FOR CATASTROPHIC FIRESTORM AND MEGAWAVE , 1994 .

[105]  J. Morse,et al.  The carbonic acid system and calcite solubility in aqueous Na-K-Ca-Mg-Cl-SO4 solutions from 0 to 90°C , 1993 .

[106]  E. Boyle,et al.  Post-depositional mobility of platinum, iridium and rhenium in marine sediments , 1992, Nature.

[107]  M. Pilkington,et al.  Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico , 1991 .

[108]  E. Martin,et al.  Seawater Sr isotopes at the Cretaceous/Tertiary boundary , 1991 .

[109]  Michael C. MacCracken,et al.  Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth , 1991 .

[110]  J. Pospichal,et al.  32 Calcareous nannofossils across the K/T boundary, ODP hole 690C, Maud Rise, Weddell Sea , 1990 .

[111]  H. Melosh,et al.  Ignition of global wildfires at the Cretaceous/Tertiary boundary , 1990, Nature.

[112]  J. Zachos,et al.  Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary , 1989, Nature.

[113]  H. Brinkhuis,et al.  Dinoflagellate cysts, sea level changes and planktonic foraminifers across the Cretaceous-Tertiary boundary at El Haria, northwest Tunisia , 1988 .

[114]  R. Prinn,et al.  Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary , 1987 .

[115]  J. Smit,et al.  A sequence of events across the Cretaceous-Tertiary boundary: Earth and Planetary Science Letters , 1985 .

[116]  J. S. Gilmore,et al.  Disruption of the Terrestrial Plant Ecosystem at the Cretaceous-Tertiary Boundary, Western Interior , 1984, Science.

[117]  A. Mucci The solubility of calcite and aragonite in seawater at various salinities , 1983 .

[118]  L. N. Plummer,et al.  The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O , 1982 .

[119]  L. W. Alvarez,et al.  Extraterrestrial Cause for the Cretaceous-Tertiary Extinction , 1980, Science.

[120]  G. Wasserburg,et al.  Initial strontium for a chondrite and the determination of a metamorphism or formation interval , 1969 .

[121]  E O Hovey,et al.  Geological Society of America , 1922, Nature.

[122]  J. Morgan,et al.  Expedition 364 preliminary report: Chicxulub: drilling the K-Pg impact crater. , 2017 .

[123]  R. Norris,et al.  Annealing the Chicxulub Impact: Paleogene Yucatàn Carbonate Slope Development in the Chicxulub Impact Basin, Mexico , 2014 .

[124]  M. Russell,et al.  The onset and early evolution of life , 2006 .

[125]  A. Romein,et al.  A sequence of events across the Cretaceous-Tert iary boundary , 2002 .

[126]  H. Newsom,et al.  Location and sampling of aqueous and hydrothermal deposits in martian impact craters. , 2001, Astrobiology.

[127]  C. Henderson,et al.  Electron Microprobe Analysis and Scanning Electron Microscopy in Geology: Frontmatter , 2005 .

[128]  Marie-Pierre Aubry,et al.  A revised Cenozoic geochronology and chronostratigraphy , 1995 .

[129]  W. Berggren,et al.  GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION , 1995 .

[130]  W. Boynton,et al.  Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti , 1992, Nature.

[131]  Iain Gilmour,et al.  Major wildfires at the Cretaceous-Tertiary boundary , 1989 .

[132]  R. Turco,et al.  Evolution of an impact-generated dust cloud and its effects on the atmosphere , 1982 .

[133]  G. Faure,et al.  Sedimentary Rocks and the Oceans , 1972 .