Chalcogenide glass planar photonics: from mid-IR sensing to 3-D flexible substrate integration

Chalcogenide glasses, namely the amorphous compounds containing sulfur, selenium, and/or tellurium, have emerged as a promising material candidate for integrated photonics given their wide infrared transparency window, low processing temperature, almost infinite capacity for composition alloying, as well as high linear and nonlinear indices. Here we present the fabrication and characterization of chalcogenide glass based photonic devices integrated on silicon as well as on flexible polymer substrates for mid-IR sensing, optical interconnect and nonlinear optics applications.

[1]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[2]  Richard A. Soref,et al.  Large-area InP-based crystalline nanomembrane flexible photodetectors , 2010 .

[3]  Joseph Maria Kumar Irudayaraj,et al.  Detection and fingerprinting of pathogens : Mid-IR biosensor using amorphous chalcogenide films , 2008 .

[4]  Candice Tsay,et al.  Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared. , 2010, Optics letters.

[5]  Kathleen Richardson,et al.  Photo-induced trimming of coupled ring-resonator filters and delay lines in As2S3 chalcogenide glass. , 2011, Optics letters.

[6]  Jian Wang,et al.  Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing. , 2012, Optics express.

[7]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[8]  J. David Musgraves,et al.  Integrated chalcogenide waveguide resonators for mid-IR sensing: Leveraging material properties to meet fabrication challenges , 2011 .

[9]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[10]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[11]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[12]  Florent Colas,et al.  Chalcogenide Glass Optical Waveguides for Infrared Biosensing , 2009, Sensors.

[13]  E. Bonhomme,et al.  Transmission measurement at 10.6μm of Te2As3Se5 rib waveguides on As2S3 substrate , 2007 .

[14]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[15]  Yasha Yi,et al.  Hurricane: A simplified optical resonator for optical-power-based sensing with nano-particle taggants , 2010 .

[16]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[17]  Mo Li,et al.  Flexible and tunable silicon photonic circuits on plastic substrates , 2012, Scientific Reports.

[18]  M. Nedeljkovic,et al.  Waveguides for mid-infrared group IV photonics , 2010, 7th IEEE International Conference on Group IV Photonics.

[19]  Kathleen Richardson,et al.  Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques , 2011 .

[20]  Hongtao Lin,et al.  Double resonance 1-D glass-on-silicon photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: Theory and design , 2012, The 9th International Conference on Group IV Photonics (GFP).

[21]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[22]  Weidong Zhou,et al.  Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes , 2009 .

[23]  Bruno Bureau,et al.  Advances in chalcogenide fiber evanescent wave biochemical sensing. , 2006, Analytical biochemistry.

[24]  Kathleen Richardson,et al.  Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. , 2007, Optics express.

[25]  Candice Tsay,et al.  Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides. , 2010, Optics express.

[26]  Martin Richardson,et al.  PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS , 2010 .

[27]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[28]  Che-Yun Lin,et al.  Stamp printing of silicon nanomembrane based flexible photonic devices , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[29]  Dennis W Prather,et al.  Nanomembrane transfer process for intricate photonic device applications. , 2011, Optics letters.

[30]  Angela B. Seddon,et al.  Chalcogenide glasses : a review of their preparation, properties and applications , 1995 .

[31]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[32]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.