Can a metal-metal bond hop in the fullerene cage?

[1]  L. Echegoyen,et al.  Trimetallic nitride endohedral fullerenes: experimental and theoretical evidence for the M3N6+@C2n6- model. , 2009, Angewandte Chemie.

[2]  R. Kaner,et al.  Lanthanum carbide (La2C80): a soluble dimetallofullerene , 1991 .

[3]  Andrew D. Sutton,et al.  Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers , 2005, Science.

[4]  Lothar Dunsch,et al.  Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. , 2007, Journal of the American Chemical Society.

[5]  Shigeru Nagase,et al.  Di-lanthanide encapsulated into large fullerene C100: a DFT survey. , 2011, Physical chemistry chemical physics : PCCP.

[6]  Xin Lu,et al.  Isolation and characterization of Sc2C2@C68: a metal-carbide endofullerene with a non-IPR carbon cage. , 2006, Angewandte Chemie.

[7]  J. Campanera,et al.  General rule for the stabilization of fullerene cages encapsulating trimetallic nitride templates. , 2005, Angewandte Chemie.

[8]  A. Popov,et al.  Bonding in endohedral metallofullerenes as studied by quantum theory of atoms in molecules. , 2009, Chemistry.

[9]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[10]  Takeshi Akasaka,et al.  Synthesis and characterization of the D5h isomer of the endohedral dimetallofullerene Ce2@C80: two-dimensional circulation of encapsulated metal atoms inside a fullerene cage. , 2009, Chemistry.

[11]  Manuel N. Chaur,et al.  Chemische, elektrochemische und Struktureigenschaften von endohedralen Metallofullerenen , 2009 .

[12]  M. Prato,et al.  Fullerene derivatives: an attractive tool for biological applications. , 2003, European journal of medicinal chemistry.

[13]  Takeshi Akasaka,et al.  13C‐ und 139La‐NMR‐Untersuchungen an La2@C80 — der erste Nachweis kreisförmiger Bewegungen von Metallatomen in endohedralen Dimetallofullerenen , 1997 .

[14]  A. Balch,et al.  Isolation and structural characterization of the molecular nanocapsule Sm(2)@D(3d)(822)-C(104). , 2009, Angewandte Chemie.

[15]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[16]  F. Wudl,et al.  Organic Molecular Soft Ferromagnetism in a FullereneC60 , 1991, Science.

[17]  T. Crawford,et al.  M2@C79N (M = Y, Tb): isolation and characterization of stable endohedral metallofullerenes exhibiting M-M bonding interactions inside aza[80]fullerene cages. , 2008, Journal of the American Chemical Society.

[18]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[19]  S. Nagase,et al.  A stable unconventional structure of Sc2@C66 found by density functional calculations , 2002 .

[20]  Lothar Dunsch,et al.  The role of an asymmetric nitride cluster on a fullerene cage: the non-IPR endohedral DySc2N@C76. , 2007, The journal of physical chemistry. B.

[21]  S. Nagase,et al.  Bonding features in endohedral metallofullerenes. Topological analysis of the electron density distribution , 1999 .

[22]  Filip Uhlík,et al.  Computing relative stabilities of metallofullerenes by Gibbs energy treatments , 2007 .

[23]  A. Fujiwara,et al.  Conductivity and field effect transistor of La2@C80 metallofullerene. , 2003, Journal of the American Chemical Society.

[24]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[25]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[26]  Hisanori Shinohara,et al.  Synthesis and UHV-STM observation of the T(d)-symmetric Lu metallofullerene: Lu2@C76(T(d)). , 2010, Chemical communications.

[27]  Lothar Dunsch,et al.  Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. , 2007, Angewandte Chemie.

[28]  A. Rodríguez‐Fortea,et al.  Understanding the stabilization of metal carbide endohedral fullerenes M2C2@C82 and related systems. , 2008, The journal of physical chemistry. A.

[29]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[30]  Luis Echegoyen,et al.  Chemical, electrochemical, and structural properties of endohedral metallofullerenes. , 2009, Angewandte Chemie.

[31]  Lothar Dunsch,et al.  Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. , 2010, Journal of the American Chemical Society.

[32]  H. Shinohara,et al.  Lanthanoid endohedral metallofullerenols for MRI contrast agents. , 2003, Journal of the American Chemical Society.

[33]  Shangfeng Yang,et al.  Die Verletzung der Regel isolierter Fünfringe (IPR): der endohedrale Nicht-IPR-Käfig von C70 in Sc3N@C70† , 2007 .

[34]  Harold W. Kroto,et al.  Isolation, separation and characterisation of the fullerenes C60 and C70 : the third form of carbon , 1990 .

[35]  A. Rodríguez‐Fortea,et al.  Large fullerenes stabilized by encapsulation of metallic clusters. , 2007, Chemical communications.

[36]  Hideyuki Funasaka,et al.  13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes , 1997 .

[37]  Takeshi Akasaka,et al.  Endohedral dimetallofullerenes Sc2@C84 and La2@C80. Are the metal atoms still inside the fullerence cages? , 1996 .

[38]  Xin Wu,et al.  Dimetalloendofullerene U(2)@C(60) has a U-U multiple bond consisting of sixfold one-electron-two-center bonds. , 2007, Journal of the American Chemical Society.

[39]  F. Cotton,et al.  The Crystal and Molecular Structure of Dipotassium Octachlorodirhenate(III) Dihydrate, K2[Re2Cl8]2H2O , 1965 .

[40]  Marilyn M. Olmstead,et al.  A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. , 2008, Journal of the American Chemical Society.

[41]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[42]  Xiang Zhao,et al.  On the structure and relative stability of C50 fullerenes. , 2005, The journal of physical chemistry. B.

[43]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[44]  Gang Zhang,et al.  Comparison of DFT methods for molecular orbital eigenvalue calculations. , 2007, The journal of physical chemistry. A.

[45]  R. Smalley,et al.  Fullerenes with metals inside , 1991 .

[46]  Laura Gagliardi,et al.  Reaching the maximum multiplicity of the covalent chemical bond. , 2007, Angewandte Chemie.

[47]  D. Murphy,et al.  Superconductivity at 18 K in potassium-doped C60 , 1991, Nature.

[48]  G. Scuseria,et al.  Is fullerene C60 large enough to host a multiply bonded dimetal? , 2008, Journal of the American Chemical Society.

[49]  Á. Pérez‐Jiménez Molecular Electronics with Endohedral Metallofullerenes : The Test Case of La2@C80 Nanojunctions , 2007 .

[50]  Yuji Kobayashi,et al.  Materials science: C66 fullerene encaging a scandium dimer , 2000, Nature.