Topological analysis and interactive visualization of biological networks and protein structures

Computational analysis and interactive visualization of biological networks and protein structures are common tasks for gaining insight into biological processes. This protocol describes three workflows based on the NetworkAnalyzer and RINalyzer plug-ins for Cytoscape, a popular software platform for networks. NetworkAnalyzer has become a standard Cytoscape tool for comprehensive network topology analysis. In addition, RINalyzer provides methods for exploring residue interaction networks derived from protein structures. The first workflow uses NetworkAnalyzer to perform a topological analysis of biological networks. The second workflow applies RINalyzer to study protein structure and function and to compute network centrality measures. The third workflow combines NetworkAnalyzer and RINalyzer to compare residue networks. The full protocol can be completed in ∼2 h.

[1]  A. Shimbel Structural parameters of communication networks , 1953 .

[2]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[3]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[4]  B. Bollobás The evolution of random graphs , 1984 .

[5]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[6]  D. Davies,et al.  Structure and Function of the Aspartic Proteinases , 1990, Advances in Experimental Medicine and Biology.

[7]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[8]  Narmada Thanki,et al.  Crystal structure of a complex of HIV‐1 protease with a dihydroxyethylene‐containing inhibitor: Comparisons with molecular modeling , 1992, Protein science : a publication of the Protein Society.

[9]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[12]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[13]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[16]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[17]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[18]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[19]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[20]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[21]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[22]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[23]  Zhenjun Hu,et al.  VisANT: data-integrating visual framework for biological networks and modules , 2005, Nucleic Acids Res..

[24]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[25]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[26]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[27]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[28]  Christopher J. Rawlings,et al.  Graph-based analysis and visualization of experimental results with ONDEX , 2006, Bioinform..

[29]  Kyongbum Lee,et al.  An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality , 2006, Bioinform..

[30]  Michael L. Creech,et al.  Integration of biological networks and gene expression data using Cytoscape , 2007, Nature Protocols.

[31]  Jun Dong,et al.  Understanding network concepts in modules , 2007, BMC Systems Biology.

[32]  Trey Ideker,et al.  Integrating physical and genetic maps: from genomes to interaction networks , 2007, Nature Reviews Genetics.

[33]  E. Almaas Biological impacts and context of network theory , 2007, Journal of Experimental Biology.

[34]  M. Gerstein,et al.  Getting connected: analysis and principles of biological networks. , 2007, Genes & development.

[35]  Thomas Lengauer,et al.  Molecular basis of telaprevir resistance due to V36 and T54 mutations in the NS3-4A protease of the hepatitis C virus , 2008, Genome Biology.

[36]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[37]  Csaba Böde,et al.  Network analysis of protein dynamics , 2007, FEBS letters.

[38]  Luonan Chen,et al.  Discovering functions and revealing mechanisms at molecular level from biological networks , 2007, Proteomics.

[39]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[40]  Martina Morris,et al.  statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data. , 2008, Journal of statistical software.

[41]  Jacques van Helden,et al.  Network Analysis Tools: from biological networks to clusters and pathways , 2008, Nature Protocols.

[42]  Carter T. Butts,et al.  Social Network Analysis with sna , 2008 .

[43]  Falk Schreiber,et al.  Analysis of Biological Networks , 2008 .

[44]  Fidel Ramírez,et al.  Computing topological parameters of biological networks , 2008, Bioinform..

[45]  P. Csermely Creative elements: network-based predictions of active centres in proteins and cellular and social networks. , 2008, Trends in biochemical sciences.

[46]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[47]  Alfonso Valencia,et al.  Modern Genome Annotation: The Biosapiens Network , 2008 .

[48]  Masaru Tomita,et al.  Proteins as networks: usefulness of graph theory in protein science. , 2008, Current protein & peptide science.

[49]  Baldomero Oliva,et al.  Biana: a software framework for compiling biological interactions and analyzing networks , 2010, BMC Bioinformatics.

[50]  S. Vishveshwara,et al.  Intra and inter-molecular communications through protein structure network. , 2009, Current protein & peptide science.

[51]  P. Bork,et al.  Evolution of biomolecular networks — lessons from metabolic and protein interactions , 2009, Nature Reviews Molecular Cell Biology.

[52]  Giovanni Scardoni,et al.  Analyzing biological network parameters with CentiScaPe , 2009, Bioinform..

[53]  Gipsi Lima-Mendez,et al.  The powerful law of the power law and other myths in network biology. , 2009, Molecular bioSystems.

[54]  Albert-László Barabási,et al.  Scale-Free Networks: A Decade and Beyond , 2009, Science.

[55]  H. Hermjakob,et al.  Protein-protein interactions: analysis and prediction , 2009, Modern Genome Annotation.

[56]  Kahn Rhrissorrakrai,et al.  MINE: Module Identification in Networks , 2011, BMC Bioinformatics.

[57]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[58]  Michele Purrello,et al.  Expression profile and specific network features of the apoptotic machinery explain relapse of acute myeloid leukemia after chemotherapy , 2010, BMC Cancer.

[59]  A. Rebaï,et al.  Application of computational approaches to study signalling networks of nuclear and Tyrosine kinase receptors , 2010, Biology Direct.

[60]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[61]  Ming Chen,et al.  PRIN: a predicted rice interactome network , 2011, BMC Bioinformatics.

[62]  Reinhard Schneider,et al.  Using graph theory to analyze biological networks , 2011, BioData Mining.

[63]  Neil Swainston,et al.  Integration of metabolic databases for the reconstruction of genome-scale metabolic networks , 2010, BMC Systems Biology.

[64]  Mona Singh,et al.  Toward the dynamic interactome: it's about time , 2010, Briefings Bioinform..

[65]  T. Ideker,et al.  A decade of systems biology. , 2010, Annual review of cell and developmental biology.

[66]  Joel S. Bader,et al.  NeMo: Network Module identification in Cytoscape , 2010, BMC Bioinformatics.

[67]  John H. Morris,et al.  Computational Tools for the Interactive Exploration of Proteomic and Structural Data* , 2010, Molecular & Cellular Proteomics.

[68]  Dorothea Emig,et al.  AltAnalyze and DomainGraph: analyzing and visualizing exon expression data , 2010, Nucleic Acids Res..

[69]  Karthik Devarajan,et al.  Synthetic Lethal Screen of an EGFR-Centered Network to Improve Targeted Therapies , 2010, Science Signaling.

[70]  Allan Kuchinsky,et al.  GLay: community structure analysis of biological networks , 2010, Bioinform..

[71]  Julie M. Sahalie,et al.  Supplementary Figure and Table Legends , 2022 .

[72]  Nataša Pržulj,et al.  Protein‐protein interactions: Making sense of networks via graph‐theoretic modeling , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[73]  Nadezhda T. Doncheva,et al.  Analyzing and visualizing residue networks of protein structures. , 2011, Trends in biochemical sciences.

[74]  S. Böcker,et al.  Comprehensive cluster analysis with Transitivity Clustering , 2011, Nature Protocols.

[75]  Silvio C. E. Tosatto,et al.  RING: networking interacting residues, evolutionary information and energetics in protein structures , 2011, Bioinform..

[76]  Matthias Dehmer,et al.  QuACN: an R package for analyzing complex biological networks quantitatively , 2011, Bioinform..

[77]  T. Ideker,et al.  Assembling global maps of cellular function through integrative analysis of physical and genetic networks , 2011, Nature Protocols.

[78]  Rob Alba,et al.  Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.) , 2011, BMC Genomics.