Review of summation-by-parts schemes for initial-boundary-value problems

High-order finite difference methods are efficient, easy to program, scale well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback has been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years has removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area.

[1]  Magnus Svärd Third-order accurate entropy-stable schemes for initial-boundary-value conservation laws , 2012 .

[2]  Jan Nordström,et al.  Summation-by-parts in time , 2013, J. Comput. Phys..

[3]  Jan Nordström,et al.  Boundary conditions for a divergence free velocity-pressure formulation of the Navier-Stokes equations , 2007, J. Comput. Phys..

[4]  Jan Nordström,et al.  A stochastic Galerkin method for the Euler equations with Roe variable transformation , 2014, J. Comput. Phys..

[5]  Bernhard Müller,et al.  Numerical simulation of confined pulsating jets in human phonation , 2009 .

[6]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[7]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[8]  Daniel Michelson,et al.  Stability theory of difference approximations for multidimensional initial-boundary value problems , 1983 .

[9]  Jason E. Hicken,et al.  Superconvergent Functional Estimates from Summation-By-Parts Finite-Difference Discretizations , 2011, SIAM J. Sci. Comput..

[10]  Magnus Svärd,et al.  Steady-State Computations Using Summation-by-Parts Operators , 2005, J. Sci. Comput..

[11]  Jan Nordström,et al.  Revisiting and Extending Interface Penalties for Multi-domain Summation-by-Parts Operators , 2010, J. Sci. Comput..

[12]  Magnus Svärd,et al.  A hybrid method for unsteady inviscid fluid flow , 2009 .

[13]  Jan Nordström,et al.  Spectral analysis of the continuous and discretized heat and advection equation on single and multiple domains , 2012 .

[14]  Mark H. Carpenter,et al.  Stable and Accurate Interpolation Operators for High-Order Multiblock Finite Difference Methods , 2009, SIAM J. Sci. Comput..

[15]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations: No-slip wall boundary conditions , 2008, J. Comput. Phys..

[16]  Jan Nordström,et al.  Conjugate heat transfer for the unsteady compressible Navier–Stokes equations using a multi-block coupling , 2013 .

[17]  AN EXTENSION OF THE KREISS MATRIX THEOREM , 1988 .

[18]  Nail K. Yamaleev,et al.  Third-Order Energy Stable WENO Scheme , 2008 .

[19]  Parviz Moin,et al.  An adaptive implicit-explicit scheme for the DNS and LES of compressible flows on unstructured grids , 2010, J. Comput. Phys..

[20]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[21]  Ken Mattsson,et al.  Boundary Procedures for Summation-by-Parts Operators , 2003, J. Sci. Comput..

[22]  Antony Jameson,et al.  Energy stable flux reconstruction schemes for advection-diffusion problems on triangles , 2013, J. Comput. Phys..

[23]  Magnus Svärd,et al.  Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..

[24]  Jan Nordström,et al.  Numerical analysis of the Burgers' equation in the presence of uncertainty , 2009, J. Comput. Phys..

[25]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[26]  Nail K. Yamaleev,et al.  Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: Theory and boundary conditions , 2013, J. Comput. Phys..

[27]  Parviz Moin,et al.  Towards time-stable and accurate LES on unstructured grids , 2007 .

[28]  D. Gottlieb,et al.  A Stable and Conservative Interface Treatment of Arbitrary Spatial Accuracy , 1999 .

[29]  Nail K. Yamaleev,et al.  Boundary closures for fourth-order energy stable weighted essentially non-oscillatory finite-difference schemes , 2011, J. Comput. Phys..

[30]  Daniel J. Bodony,et al.  Scattering of an entropy disturbance into sound by a symmetric thin body , 2009 .

[31]  Magnus Svärd,et al.  Stable and accurate schemes for the compressible Navier-Stokes equations , 2008, J. Comput. Phys..

[32]  E. Schnetter,et al.  A multi-block infrastructure for three-dimensional time-dependent numerical relativity , 2006, gr-qc/0602104.

[33]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[34]  Jing Gong,et al.  Interface procedures for finite difference approximations of the advection-diffusion equation , 2011, J. Comput. Appl. Math..

[35]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[36]  Daniel Michelson Convergence theorem for difference approximations of hyperbolic quasilinear initial-boundary value problems , 1987 .

[37]  Magnus Svärd,et al.  A stable high-order finite difference scheme for the compressible Navier-Stokes equations, far-field boundary conditions , 2007, J. Comput. Phys..

[38]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[39]  R. Lewis,et al.  Low-storage, Explicit Runge-Kutta Schemes for the Compressible Navier-Stokes Equations , 2000 .

[40]  H. Kreiss,et al.  Initial-Boundary Value Problems and the Navier-Stokes Equations , 2004 .

[41]  Jing Gong,et al.  A stable and efficient hybrid scheme for viscous problems in complex geometries , 2007, J. Comput. Phys..

[42]  Jason E. Hicken,et al.  Dual consistency and functional accuracy: a finite-difference perspective , 2014, J. Comput. Phys..

[43]  Saul Abarbanel,et al.  MULTI-DIMENSIONAL ASYMPTOTICALLY STABLE FINITE DIFFERENCE SCHEMES FOR THE ADVECTION-DIFFUSION EQUATION , 1996 .

[44]  H. Kreiss,et al.  Finite Element and Finite Difference Methods for Hyperbolic Partial Differential Equations , 1974 .

[45]  Gilbert Strang,et al.  Accurate partial difference methods , 1964 .

[46]  Magnus Svärd,et al.  Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions , 2014, J. Sci. Comput..

[47]  J. Alonso,et al.  Optimization with Gradient and Hessian Information Calculated Using Hyper-Dual Numbers , 2011 .

[48]  Bernhard Müller,et al.  High order numerical simulation of Aeolian tones , 2008 .

[49]  Alina Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes , 2000 .

[50]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[51]  Magnus Svärd,et al.  Higher-order finite difference schemes for the magnetic induction equations with resistivity , 2011 .

[52]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[53]  Jan Nordström,et al.  Duality based boundary conditions and dual consistent finite difference discretizations of the Navier-Stokes and Euler equations , 2014, J. Comput. Phys..

[54]  H. C. Yee,et al.  Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers , 2001, J. Sci. Comput..

[55]  Margot Gerritsen,et al.  Stability at Nonconforming Grid Interfaces for a High Order Discretization of the Schrödinger Equation , 2012, J. Sci. Comput..

[56]  A computational study of vortex–airfoil interaction using high-order finite difference methods , 2010 .

[57]  Margot Gerritsen,et al.  Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations , 1996 .

[58]  T. Pulliam,et al.  A diagonal form of an implicit approximate-factorization algorithm , 1981 .

[59]  Jan Nordström,et al.  Finite volume approximations and strict stability for hyperbolic problems , 2001 .

[60]  B. Gustafsson High Order Difference Methods for Time Dependent PDE , 2008 .

[61]  Erik Schnetter,et al.  Multipatch methods in general relativistic astrophysics: Hydrodynamical flows on fixed backgrounds , 2007, 0712.0353.

[62]  Jing Gong,et al.  A stable hybrid method for hyperbolic problems , 2006, J. Comput. Phys..

[63]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[64]  Jing Gong,et al.  A stable and conservative high order multi-block method for the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[65]  Jason E. Hicken,et al.  Summation-by-parts operators and high-order quadrature , 2011, J. Comput. Appl. Math..

[66]  Jan Nordstr ERROR BOUNDED SCHEMES FOR TIME-DEPENDENT HYPERBOLIC PROBLEMS ∗ , 2007 .

[67]  Olsson,et al.  SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I , 2010 .

[68]  Jeremy E. Kozdon,et al.  Simulation of Dynamic Earthquake Ruptures in Complex Geometries Using High-Order Finite Difference Methods , 2013, J. Sci. Comput..

[69]  Jan Nordström,et al.  On the impact of boundary conditions on dual consistent finite difference discretizations , 2013, J. Comput. Phys..

[70]  A. Chertock,et al.  Strict Stability of High-Order Compact Implicit Finite-Difference Schemes: The Role of Boundary Conditions for Hyperbolic PDEs, II , 2000 .

[71]  W Po BOUNDARY PROCEDURES FOR THE TIME-DEPENDENT BURGERS' EQUATION UNDER UNCERTAINTY , 2010 .

[72]  S. Abarbanel,et al.  Asymptotically Stable Fourth-Order Accurate Schemes for the Diffusion Equation on Complex Shapes , 1997 .

[73]  Bertil Gustafsson,et al.  On Error Bounds of Finite Difference Approximations to Partial Differential Equations—Temporal Behavior and Rate of Convergence , 2000, J. Sci. Comput..

[74]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[75]  B. A. Wade SYMMETRIZABLE FINITE DIFFERENCE OPERATORS , 1990 .

[76]  Jan Nordström,et al.  Stable Robin solid wall boundary conditions for the Navier-Stokes equations , 2011, J. Comput. Phys..

[77]  Hester Bijl,et al.  Fourth-Order Runge–Kutta Schemes for Fluid Mechanics Applications , 2005, J. Sci. Comput..

[78]  Gianluca Iaccarino,et al.  Stable Boundary Treatment for the Wave Equation on Second-Order Form , 2009, J. Sci. Comput..

[79]  Magnus Svärd,et al.  A note on $$L^{\infty }$$L∞ bounds and convergence rates of summation-by-parts schemes , 2014 .

[80]  Jan Nordström,et al.  The use of characteristic boundary conditions for the Navier-Stokes equations , 1995 .

[81]  Gianluca Iaccarino,et al.  Stable and accurate wave-propagation in discontinuous media , 2008, J. Comput. Phys..

[82]  Magnus Svärd,et al.  High-order accurate computations for unsteady aerodynamics , 2007 .

[83]  Jan Nordström,et al.  Fluid structure interaction problems : the necessity of a well posed, stable and accurate formulation , 2010 .

[84]  Jason E. Hicken Output error estimation for summation-by-parts , 2014 .

[85]  Ken Mattsson,et al.  Stable and accurate second-order formulation of the shifted wave equation , 2009 .

[86]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[87]  J. Nordström,et al.  The SBP-SAT Technique for Time- Discretization , 2013 .

[88]  Siddhartha Mishra,et al.  On stability of numerical schemes via frozen coefficients and the magnetic induction equations , 2010 .

[89]  Rong Wang,et al.  Linear Instability of the Fifth-Order WENO Method , 2007, SIAM J. Numer. Anal..

[90]  Joseph Oliger,et al.  Energy and Maximum Norm Es-timates for Nonlinear Conservation Laws , 1994 .

[91]  Jan Nordström,et al.  An intrusive hybrid method for discontinuous two-phase flow under uncertainty , 2013 .

[92]  B. Strand Summation by parts for finite difference approximations for d/dx , 1994 .

[93]  Bertil Gustafsson,et al.  The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .

[94]  Magnus Svärd,et al.  Higher order finite difference schemes for the magnetic induction equations , 2009, 1102.0473.

[95]  David Gottlieb,et al.  Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives , 1981 .

[96]  Jan Nordström,et al.  Weak and strong wall boundary procedures and convergence to steady-state of the Navier-Stokes equations , 2012, J. Comput. Phys..

[97]  Jan Nordström,et al.  A stable and conservative method for locally adapting the design order of finite difference schemes , 2011, J. Comput. Phys..

[98]  Erik Schnetter,et al.  Numerical study of the quasinormal mode excitation of Kerr black holes , 2006, gr-qc/0608091.

[99]  Magnus Svärd,et al.  Stable artificial dissipation operators for finite volume schemes on unstructured grids , 2006 .

[100]  Magnus Svärd,et al.  On the order of accuracy for difference approximations of initial-boundary value problems , 2006, J. Comput. Phys..

[101]  Daniel J. Bodony,et al.  Accuracy of the Simultaneous-Approximation-Term Boundary Condition for Time-Dependent Problems , 2010, J. Sci. Comput..

[102]  Travis C. Fisher,et al.  High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains , 2013, J. Comput. Phys..

[103]  Jan Nordström,et al.  On stability and monotonicity requirements of finite difference approximations of stochastic conservation laws with random viscosity , 2013 .

[104]  E. Tadmor Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[105]  Magnus Svärd,et al.  On Coordinate Transformations for Summation-by-Parts Operators , 2004, J. Sci. Comput..

[106]  Jan Nordström,et al.  A stable and high-order accurate conjugate heat transfer problem , 2010, J. Comput. Phys..

[107]  H. Kreiss,et al.  On the stability definition of difference approximations for the initial boundary value problem , 1993 .

[108]  Jan Nordström,et al.  Superconvergent functional output for time-dependent problems using finite differences on summation-by-parts form , 2012, J. Comput. Phys..

[109]  Jeremy E. Kozdon,et al.  Interaction of Waves with Frictional Interfaces Using Summation-by-Parts Difference Operators: Weak Enforcement of Nonlinear Boundary Conditions , 2012, J. Sci. Comput..

[110]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[111]  Jan Nordström,et al.  High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates , 2001 .

[112]  Magnus Svärd,et al.  Entropy stable schemes for initial-boundary-value conservation laws , 2012 .

[113]  Jan Nordström,et al.  High Order Finite Difference Approximations of Electromagnetic Wave Propagation Close to Material Discontinuities , 2003, J. Sci. Comput..

[114]  Jan Nordström,et al.  High order finite difference methods for wave propagation in discontinuous media , 2006, J. Comput. Phys..

[115]  Jan Nordström,et al.  High-order accurate difference schemes for the Hodgkin-Huxley equations , 2012, J. Comput. Phys..

[116]  Magnus Svärd,et al.  Stability of finite volume approximations for the Laplacian operator on quadrilateral and triangular grids , 2004 .

[117]  Jan Nordström,et al.  Finite volume methods, unstructured meshes and strict stability for hyperbolic problems , 2003 .

[118]  Magnus Svärd,et al.  Implicit-explicit schemes for flow equations with stiff source terms , 2011, J. Comput. Appl. Math..

[119]  Jan Nordström,et al.  Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..

[120]  Colin B. Macdonald,et al.  On the Linear Stability of the Fifth-Order WENO Discretization , 2011, J. Sci. Comput..

[121]  Ken Mattsson,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2012, J. Sci. Comput..

[122]  D. Gottlieb,et al.  Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes , 1994 .

[123]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..