Single-ended transceiver design techniques for 5.33Gb/s graphics applications

Graphics processing is the driving force behind the demand for high-bandwidth DRAMs. Accelerating the pace of bandwidth improvement, fifth-generation graphics DDRs will operate at data rates up to 5.33Gb/s, and support single-ended signaling for low pin-count. A significant design challenge is to ensure proper signal transmission over single-ended wires at rates previously attainable only with differential pairs. We present single-ended transceiver design techniques for 5.33Gb/s operation. In addition to the receiver and transmitter, a CML-to-CMOS converter and an integrated serializer/level-shifter are described (Fig. 7.5.1). The circuits are fabricated in 0.13µm 1.2V CMOS. The chip area is 5.7×7.0mm2 and is housed in a quadratic BGA package with 289 balls.

[1]  Stanley E. Schuster,et al.  Fast CMOS ECL receivers with 100-mV worst-case sensitivity , 1988 .

[2]  J.G. Maneatis,et al.  Low-jitter and process independent DLL and PLL based on self biased techniques , 1996, 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC.

[3]  Eric Naviasky,et al.  A 62.5 Gb/s multi-standard SerDes IC , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..