Copper-Plating Metallization With Alternative Seed Layers for c-Si Solar Cells Embedding Carrier-Selective Passivating Contacts

In this article, we develop in parallel two fabrication methods for copper (Cu) electroplated contacts suitable for either silicon nitride or transparent conductive oxide antireflective coatings. We employ alternative seed layers, such as evaporated Ag or Ti, and optimize the Ti–Cu or Ag–Cu contacts with respect to uniformity of plating and aspect ratio of the final plated grid. Moreover, we test plating/deplating sequence instead of a direct current plating or the SiO2 layer approach to solve undesired plating outside the designed contact openings. The main objective of this paper is to explore the physical limit of this contact formation technology keeping the process compatible with industrial needs. In addition, we employ the optimized Cu-plating contacts in three different front/back-contacted crystalline silicon solar cells architectures: 1) silicon heterojunction solar cell with hydrogenated nanocrystalline silicon oxide as doped layers, 2) thin SiO2/doped poly-Si-poly-Si solar cell, and 3) hybrid solar cell endowed with rear thin SiO2/poly-Si contact and front heterojunction contact. To investigate the metallization quality, we compare fabricated devices to reference ones obtained with standard front metallization (Ag screen printing and Al evaporation). We observe a relatively small drop in VOC by 5 to 10 mV by using Cu-plating front grid, whereas fill factor was improved for solar cells with Cu-plated front contact if compared with evaporated Al.

[1]  A. Brand,et al.  Interface oxides in femtosecond laser structured plated Ni-Cu-Ag contacts for silicon solar cells , 2017 .

[2]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[3]  Low temperature direct electroless nickel plating on silicon wafer , 2009 .

[4]  E. Bugiel,et al.  Working principle of carrier selective poly-Si/c-Si junctions: Is tunnelling the whole story? , 2016 .

[5]  J. Pak,et al.  Investigation of Cu metallization for Si solar cells , 2002 .

[6]  B. Stannowski,et al.  Nanocrystalline n-Type Silicon Oxide Front Contacts for Silicon Heterojunction Solar Cells: Photocurrent Enhancement on Planar and Textured Substrates , 2018, IEEE Journal of Photovoltaics.

[7]  Benjamin G. Lee,et al.  Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements , 2018 .

[8]  M. Schubert,et al.  Optimizing Adhesion of Laser Structured Plated Ni-Cu Contacts with Insights from Micro Characterization☆ , 2016 .

[9]  R. Brendel,et al.  18.9 %-Efficient Screen-Printed Solar Cells Applying a Print-on-Print Process , 2011 .

[10]  J. Luchies,et al.  LPCVD polysilicon passivating contacts , 2016 .

[11]  Mehul C. Raval,et al.  Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells , 2013 .

[12]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[13]  S. Glunz,et al.  Carrier-selective contacts for Si solar cells , 2014 .

[14]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[15]  A. Rehman,et al.  Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells , 2014, Materials.

[16]  Giso Hahn,et al.  Review on screen printed metallization on p-type silicon , 2012 .

[17]  Yu Wu,et al.  Crystalline silicon solar cell with front and rear polysilicon passivated contacts as bottom cell for hybrid tandems , 2017 .

[18]  Miles V. Sullivan,et al.  Electroless Nickel Plating for Making Ohmic Contacts to Silicon , 1957 .

[19]  R. Müller,et al.  Ion implantation into amorphous Si layers to form carrier‐selective contacts for Si solar cells , 2014 .

[20]  M. Glatthaar,et al.  Selective plating concept for silicon heterojunction solar cell metallization , 2017 .

[21]  S. Glunz,et al.  Tunnel oxide passivating electron contacts as full‐area rear emitter of high‐efficiency p‐type silicon solar cells , 2018 .

[22]  M. Zeman,et al.  Front and rear contact Si solar cells combining high and low thermal budget Si passivating contacts , 2019, Solar Energy Materials and Solar Cells.

[23]  Toshihiko Uto,et al.  Effects of SiOx barrier layer prepared by plasma-enhanced chemical vapor deposition on improvement of long-term reliability and production cost for Cu-plated amorphous Si/crystalline Si heterojunction solar cells , 2017 .

[24]  R. Brendel,et al.  Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells , 2018, Solar Energy Materials and Solar Cells.

[25]  Benjamin G. Lee,et al.  Effect of the SiO2 interlayer properties with solid-source hydrogenation on passivated contact performance and surface passivation , 2017 .

[26]  D. Borchert,et al.  Novel mask-less plating metallization route for bifacial silicon heterojunction solar cells , 2018 .

[27]  M. Werner,et al.  Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[28]  M. Kondo,et al.  Nature of doped a-Si:H / c-Si interface recombination , 2009 .

[29]  S. Bowden,et al.  Development of Cu plating for silicon heterojunction solar cells , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[30]  Ronald A. Sinton,et al.  Quasi-steady-state photoconductance, a new method for solar cell material and device characterization , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[31]  S. Glunz,et al.  Efficient carrier-selective p- and n-contacts for Si solar cells , 2014 .

[32]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[33]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[34]  Doyeun Kim,et al.  Low-cost contact formation of high-efficiency crystalline silicon solar cells by plating , 2005 .

[35]  A. Brand,et al.  Easy Plating—A Simple Approach to Suppress Parasitically Metallized Areas in Front Side Ni/Cu Plated Crystalline Si Solar Cells , 2017, IEEE Journal of Photovoltaics.

[36]  Gunnar Schubert,et al.  Summary of the Third Workshop on Metallization for Crystalline Silicon Solar Cells , 2012 .

[37]  Miro Zeman,et al.  Design and application of ion-implanted polySi passivating contacts for interdigitated back contact c-Si solar cells , 2016 .

[38]  A. Cowley,et al.  Titanium-silicon Schottky barrier diodes , 1970 .

[39]  Benjamin G. Lee,et al.  Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells , 2015 .

[40]  S. Murarka,et al.  Copper metallization for ULSL and beyond , 1995 .

[41]  Novel Plating Processes for Silicon Heterojunction Solar Cell Metallization Using a Structured Seed Layer , 2017, IEEE Journal of Photovoltaics.

[42]  Jonas Bartsch,et al.  Characterization of Copper Diffusion in Silicon Solar Cells , 2015 .

[43]  Che-yu Li,et al.  Effect of residual stress and adhesion on the hardness of copper films deposited on silicon , 1990 .

[44]  Daniel Biro,et al.  The Nature of Screen Printed Front Side Silver Contacts - Results of the project MikroSol , 2013 .

[45]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[46]  Giso Hahn,et al.  The Origin of Background Plating , 2011 .

[47]  M. Chandrasekar,et al.  Pulse and pulse reverse plating—Conceptual,advantages and applications , 2008 .

[48]  W. Kessels,et al.  Concepts and prospects of passivating contacts for crystalline silicon solar cells , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[49]  R. Jaeger Introduction to microelectronic fabrication , 1987 .

[50]  Martin A. Green,et al.  The Passivated Emitter and Rear Cell (PERC): From conception to mass production , 2015 .