A new recursion-theoretic characterization of the polytime functions (extended abstract)

We give a recursion-theoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2<supscrpt>|<italic>x</italic>|.|<italic>y</italic>|</supscrpt>) of Cobham.

[1]  Daniel Leivant,et al.  A foundational delineation of computational feasibility , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[2]  S. Bellantoni,et al.  Predicative recursion and computational complexity , 1992 .

[3]  Stephen A. Bloch Functional characterizations of uniform log-depth and polylog-depth circuit families , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[4]  Robert W. Ritchie,et al.  CLASSES OF PREDICTABLY COMPUTABLE FUNCTIONS , 1963 .

[5]  Neil Immerman,et al.  Descriptive and Computational Complexity , 1989, FCT.

[6]  Stephen A. Cook,et al.  Computability and Complexity of Higher Type Functions , 1992 .

[7]  P. Clote Sequential, machine-independent characterizations of the parallel complexity classes AlogTIME, AC k , NC k and NC , 1990 .

[8]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[9]  David W. Stemple,et al.  Uniform Traversal Combinators: Definition, Use and Properties , 1992, CADE.

[10]  Peter Clote,et al.  Exponential Time and Bounded Arithmetic , 1986, SCT.

[11]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[12]  Bill Allen,et al.  Arithmetizing Uniform NC , 1991, Ann. Pure Appl. Log..

[13]  Bruce M. Kapron,et al.  Characterizations of the basic feasible functionals of finite type , 1989, 30th Annual Symposium on Foundations of Computer Science.

[14]  Yuri Gurevich,et al.  Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[15]  Anil Seth,et al.  There is no recursive axiomatization for feasible functionals of type 2 , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[16]  Stephen A. Cook,et al.  Functional interpretations of feasibly constructive arithmetic , 1989, STOC '89.

[17]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[18]  Stephen A. Cook,et al.  Feasibly constructive proofs and the propositional calculus (Preliminary Version) , 1975, STOC.

[19]  Daniel Leivant,et al.  Subrecursion and lambda representation over free algebras , 1990 .