Complement and cytokine based therapeutic strategies in myasthenia gravis.

[1]  S. Fuchs,et al.  Blocking of IL-6 suppresses experimental autoimmune myasthenia gravis. , 2011, Journal of autoimmunity.

[2]  John D Lambris,et al.  The C5a Receptor Impairs IL-12–Dependent Clearance of Porphyromonas gingivalis and Is Required for Induction of Periodontal Bone Loss , 2011, The Journal of Immunology.

[3]  K. Lazaridis,et al.  Update on the genetics and genomics of PBC. , 2010, Journal of autoimmunity.

[4]  J. Smolen,et al.  Pathogenetic aspects of systemic lupus erythematosus with an emphasis on regulatory T cells. , 2010, Journal of autoimmunity.

[5]  I. Mackay,et al.  The odd couple: a fresh look at autoimmunity and immunodeficiency. , 2010, Journal of autoimmunity.

[6]  G. Zandman-Goddard,et al.  Drug-induced lupus: an update. , 2010, Autoimmunity reviews.

[7]  Y. Shoenfeld,et al.  Systemic lupus erythematosus and the SLE galaxy. , 2010, Autoimmunity reviews.

[8]  P. Youinou Haralampos M. Moutsopoulos: a lifetime in autoimmunity. , 2010, Journal of autoimmunity.

[9]  A. Tincani,et al.  Pregnancy in autoimmune rheumatic diseases: the importance of counselling for old and new challenges. , 2010, Autoimmunity reviews.

[10]  M. Crow,et al.  Activation of the type I interferon pathway in primary Sjogren's syndrome. , 2010, Journal of autoimmunity.

[11]  A. Wiik,et al.  Antinuclear antibodies: a contemporary nomenclature using HEp-2 cells. , 2010, Journal of autoimmunity.

[12]  H. Utsumi,et al.  Clinical implication of peripheral CD4+CD25+ regulatory T cells and Th17 cells in myasthenia gravis patients , 2010, Journal of Neuroimmunology.

[13]  J. Pers,et al.  The international symposium on Sjögren's syndrome in Brest: the "top of the tops" at the "tip of the tips". , 2010, Autoimmunity reviews.

[14]  A. Saraux The point on the ongoing B-cell depleting trials currently in progress over the world in primary Sjögren's syndrome. , 2010, Autoimmunity reviews.

[15]  S. Muller,et al.  Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. , 2010, Journal of autoimmunity.

[16]  K. Schwarz,et al.  Autoimmunity, autoinflammation and lymphoma in combined immunodeficiency (CID). , 2010, Autoimmunity reviews.

[17]  Y. Shoenfeld,et al.  Geo-epidemiology and autoimmunity. , 2010, Journal of autoimmunity.

[18]  J. Powell,et al.  Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. , 2010, Journal of autoimmunity.

[19]  E. Maverakis,et al.  Light, including ultraviolet. , 2010, Journal of autoimmunity.

[20]  J. Ali,et al.  Current remedies for vitiligo. , 2010, Autoimmunity reviews.

[21]  A. Schilder Wegener's Granulomatosis vasculitis and granuloma. , 2010, Autoimmunity reviews.

[22]  P. Christadoss,et al.  Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile , 2010, Inflammation Research.

[23]  J. Chiorini,et al.  Sjögren syndrome: advances in the pathogenesis from animal models. , 2009, Journal of autoimmunity.

[24]  M. Gershwin,et al.  Navigating the passage between Charybdis and Scylla: recognizing the achievements of Noel Rose. , 2009, Journal of autoimmunity.

[25]  Hong Lin,et al.  Correlation of C3 level with severity of generalized myasthenia gravis , 2009, Muscle & nerve.

[26]  H. Katus,et al.  Autoimmune myocarditis: past, present and future. , 2009, Journal of autoimmunity.

[27]  C. David,et al.  Autoimmune thyroiditis: a model uniquely suited to probe regulatory T cell function. , 2009, Journal of autoimmunity.

[28]  I. Mackay,et al.  Clustering and commonalities among autoimmune diseases. , 2009, Journal of autoimmunity.

[29]  Hulun Li,et al.  Disequilibrium of T helper type 1, 2 and 17 cells and regulatory T cells during the development of experimental autoimmune myasthenia gravis , 2009, Immunology.

[30]  V. Bajic,et al.  A functional SNP in the regulatory region of the decay-accelerating factor gene associates with extraocular muscle pareses in myasthenia gravis , 2009, Genes and Immunity.

[31]  W. Allman,et al.  Mannose-binding lectin pathway is not involved in myasthenia gravis pathogenesis , 2009, Journal of Neuroimmunology.

[32]  Hulun Li,et al.  BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO , 2009, European journal of immunology.

[33]  C. Parker Eculizumab for paroxysmal nocturnal haemoglobinuria , 2009, The Lancet.

[34]  B. Gong,et al.  Novel complement inhibitor limits severity of experimentally myasthenia gravis , 2009, Annals of neurology.

[35]  Monica Milani,et al.  CD4+ T Cells and Cytokines in the Pathogenesis of Acquired Myasthenia Gravis , 2008, Annals of the New York Academy of Sciences.

[36]  B. Gong,et al.  Extraocular Muscle Susceptibility to Myasthenia Gravis , 2008, Annals of the New York Academy of Sciences.

[37]  B. Prabhakar,et al.  Strategies for Treating Autoimmunity , 2008, Annals of the New York Academy of Sciences.

[38]  A. Vincent,et al.  IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis† , 2008, Brain : a journal of neurology.

[39]  W. Allman,et al.  C5a is not involved in experimental autoimmune myasthenia gravis pathogenesis , 2008, Journal of Neuroimmunology.

[40]  B. Gong,et al.  Anti-C5 Antibody Treatment Ameliorates Weakness in Experimentally Acquired Myasthenia Gravis1 , 2007, The Journal of Immunology.

[41]  W. Allman,et al.  A new mouse model of autoimmune ocular myasthenia gravis. , 2007, Investigative ophthalmology & visual science.

[42]  A. Marx,et al.  Immunopathology and Infectious Disease Myasthenia Gravis Thymus Complement Vulnerability of Epithelial and Myoid Cells , Complement Attack on Them , and Correlations with Autoantibody Status , 2007 .

[43]  R. Caspi,et al.  C57BL/6 Mice Genetically Deficient in IL-12/IL-23 and IFN-γ Are Susceptible to Experimental Autoimmune Myasthenia Gravis, Suggesting a Pathogenic Role of Non-Th1 Cells1 , 2007, The Journal of Immunology.

[44]  P. Christadoss,et al.  Pros and cons of treating murine myasthenia gravis with anti-C1q antibody , 2007, Journal of Neuroimmunology.

[45]  E. Tüzün,et al.  HIGH INTERLEUKIN-10 PRODUCTION IS ASSOCIATED WITH ANTI-ACETYLCHOLINE RECEPTOR ANTIBODY PRODUCTION AND TREATMENT RESPONSE IN JUVENILE MYASTHENIA GRAVIS , 2007, The International journal of neuroscience.

[46]  P. Christadoss,et al.  Complement regulator CD59 deficiency fails to augment susceptibility to actively induced experimental autoimmune myasthenia gravis , 2006, Journal of Neuroimmunology.

[47]  H. Kaminski,et al.  Deficiency of decay accelerating factor and CD59 leads to crisis in experimental myasthenia , 2006, Experimental Neurology.

[48]  Monica Milani,et al.  Myasthenia gravis: past, present, and future. , 2006, The Journal of clinical investigation.

[49]  M. Mizuno,et al.  The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice , 2006, Clinical and experimental immunology.

[50]  M. Mizuno,et al.  Complement membrane attack is required for endplate damage and clinical disease in passive experimental myasthenia gravis in Lewis rats , 2006, Clinical and experimental immunology.

[51]  P. Christadoss,et al.  Immunization of mice with T cell-dependent antigens promotes IL-6 and TNF-alpha production in muscle cells. , 2006, Cytokine.

[52]  Chuan-zhen Lu,et al.  The limitation of IL-10-exposed dendritic cells in the treatment of experimental autoimmune myasthenia gravis and myasthenia gravis. , 2006, Cellular immunology.

[53]  S. Higgs,et al.  Genetic evidence for the involvement of Fcγ receptor III in experimental autoimmune myasthenia gravis pathogenesis , 2006, Journal of Neuroimmunology.

[54]  P. Christadoss,et al.  Predictive value of serum anti-C1q antibody levels in experimental autoimmune myasthenia gravis , 2006, Neuromuscular Disorders.

[55]  P. Christadoss,et al.  IL-1 Receptor Antagonist-Mediated Therapeutic Effect in Murine Myasthenia Gravis Is Associated with Suppressed Serum Proinflammatory Cytokines, C3, and Anti-Acetylcholine Receptor IgG11 , 2005, The Journal of Immunology.

[56]  J. Lochman,et al.  Immunoadsorption therapy and complement activation. , 2005, Transfusion and apheresis science : official journal of the World Apheresis Association : official journal of the European Society for Haemapheresis.

[57]  N. Gilhus,et al.  The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo , 2005, Journal of Neuroimmunology.

[58]  S. Leurgans,et al.  Etanercept treatment in corticosteroid-dependent myasthenia gravis , 2004, Neurology.

[59]  H. Kirchner,et al.  Antigen localization within the splenic marginal zone restores humoral immune response and IgG class switch in complement C4-deficient mice. , 2004, International immunology.

[60]  H. Link,et al.  Interferon‐γ‐modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis , 2004 .

[61]  H. Kaminski,et al.  Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis , 2004, Experimental Neurology.

[62]  H. Link,et al.  Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells , 2004, Neurobiology of Disease.

[63]  S. Higgs,et al.  Circulating Immune Complexes Augment Severity of Antibody-Mediated Myasthenia Gravis in Hypogammaglobulinemic RIIIS/J Mice1 , 2004, The Journal of Immunology.

[64]  J. Atkinson,et al.  ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. , 2004, Molecular immunology.

[65]  M. Milani,et al.  The Susceptibility to Experimental Myasthenia Gravis of STAT6−/− and STAT4−/− BALB/c Mice Suggests a Pathogenic Role of Th1 Cells 1 , 2004, The Journal of Immunology.

[66]  S. Higgs,et al.  Genetic Evidence for Involvement of Classical Complement Pathway in Induction of Experimental Autoimmune Myasthenia Gravis 1 , 2003, The Journal of Immunology.

[67]  M. Milani,et al.  Absence of IL-4 Facilitates the Development of Chronic Autoimmune Myasthenia Gravis in C57BL/6 Mice1 , 2003, The Journal of Immunology.

[68]  P. Christadoss,et al.  Resistance to Experimental Autoimmune Myasthenia Gravis in IL-6-Deficient Mice Is Associated with Reduced Germinal Center Formation and C3 Production1 , 2002, The Journal of Immunology.

[69]  P. Christadoss,et al.  Role of IL-5 during primary and secondary immune response to acetylcholine receptor , 2002, Journal of Neuroimmunology.

[70]  P. Christadoss,et al.  Treatment of experimental autoimmune myasthenia gravis with recombinant human tumor necrosis factor receptor Fc protein , 2002, Journal of Neuroimmunology.

[71]  P. Christadoss,et al.  Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis , 2002, Journal of Neuroimmunology.

[72]  S. Fuchs,et al.  Suppression of experimental myasthenia gravis, a B cell‐mediated autoimmune disease, by blockade of IL‐18 , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[73]  P. Christadoss,et al.  Lymphotoxin-alpha deficiency completely protects C57BL/6 mice from developing clinical experimental autoimmune myasthenia gravis , 2001, Journal of Neuroimmunology.

[74]  F. Shi,et al.  Disruption of the IL‐1β gene diminishes acetylcholine receptor‐induced immune responses in a murine model of myasthenia gravis , 2001, European journal of immunology.

[75]  S. Barnum,et al.  Attenuation of Experimental Autoimmune Demyelination in Complement-Deficient Mice1 , 2000, The Journal of Immunology.

[76]  P. Christadoss,et al.  Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR , 2000, Journal of Neuroimmunology.

[77]  F. Shi,et al.  Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. , 2000, International immunology.

[78]  D. Metzger,et al.  Interleukin-12 enhances clinical experimental autoimmune myasthenia gravis in susceptible but not resistant mice , 2000, Journal of Neuroimmunology.

[79]  P. Karachunski,et al.  Absence of IFN-γ or IL-12 Has Different Effects on Experimental Myasthenia Gravis in C57BL/6 Mice1 , 2000, The Journal of Immunology.

[80]  P. Christadoss,et al.  Animal models of myasthenia gravis. , 2000, Clinical immunology.

[81]  K. Krolick,et al.  Myocytes respond to both interleukin-4 and interferon-gamma: cytokine responsiveness with the potential to influence the severity and course of experimental myasthenia gravis. , 2000, Clinical immunology.

[82]  H. Link,et al.  Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. , 1999, Journal of immunology.

[83]  P. Christadoss,et al.  The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. , 1998, Journal of immunology.

[84]  P. Christadoss,et al.  Interferon γ (IFN-γ) Is Necessary for the Genesis of Acetylcholine Receptor–induced Clinical Experimental Autoimmune Myasthenia gravis in Mice , 1997, The Journal of experimental medicine.

[85]  P. Christadoss,et al.  IFN-α Therapy Is Effective in Suppressing the Clinical Experimental Myasthenia Gravis , 1996 .

[86]  A. Vincent,et al.  Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis , 1996, Journal of Neuroimmunology.

[87]  M. Walport,et al.  IFN-gamma up-regulates expression of the complement components C3 and C4 by stabilization of mRNA. , 1996, Journal of immunology.

[88]  G. Biesecker,et al.  Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. , 1989, Journal of immunology.

[89]  P. Christadoss C5 gene influences the development of murine myasthenia gravis. , 1988, Journal of immunology.

[90]  G. Lunt,et al.  Complement‐Mediated Muscle Damage Produced by Myasthenic Sera , 1987, Annals of the New York Academy of Sciences.

[91]  A. Engel,et al.  THE IMMUNOPATHOLOGY OF ACQUIRED MY ASTHENIA GRAVIS * , 1981 .

[92]  A. Pestronk,et al.  Mechanisms of acetylcholine receptor loss in myasthenia gravis. , 1980, Journal of neurology, neurosurgery, and psychiatry.

[93]  A. Engel,et al.  Ultrastructural Localization of the Terminal and Lytic Ninth Complement Component (C9) at the Motor End‐plate in Myasthenia Gravis , 1979, Journal of neuropathology and experimental neurology.

[94]  R. Ulevitch,et al.  Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis , 1978, The Journal of experimental medicine.

[95]  A. Engel,et al.  Immune complexes (IgG and C3) at the motor end-plate in myasthenia gravis: ultrastructural and light microscopic localization and electrophysiologic correlations. , 1977, Mayo Clinic proceedings.

[96]  O. Plescia,et al.  Changes in Serum Complement Activity in Patients with Myasthenia Gravis. ∗ , 1960, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[97]  J. Tarr,et al.  Immune function of C1q and its modulators CD91 and CD93. , 2005, Critical reviews in immunology.

[98]  S. Gammeltoft,et al.  Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3. , 1987, Clinical and experimental immunology.