Construction and Analysis of HDG Methods for Linearized Shallow Water Equations

We present a systematic and constructive methodology to devise various hybridized discontinuous Galerkin (HDG) methods for linearized shallow water equations. It is shown that using the Rankine--Hugoniot condition to solve the Riemann problem is a natural approach to deriving HDG methods. At the heart of our development is an upwind HDG framework obtained by hybridizing the upwind flux in the standard discontinuous Galerkin (DG) approach. Essentially, the HDG framework is a redesign of the standard DG approach to reducing the number of coupled unknowns. An upwind and three other HDG methods are constructed and analyzed for linearized shallow water systems. Rigorous stability and convergence analysis for both semidiscrete and fully discrete systems are provided. We extend the upwind HDG method to a family of penalty HDG schemes and rigorously analyze their well-posedness, stability, and convergence rates. Numerical results for the linear standing wave and the Kelvin wave for oceanic shallow water systems a...

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[3]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[4]  Bernardo Cockburn,et al.  High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics , 2011, J. Comput. Phys..

[5]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[6]  Bernardo Cockburn,et al.  Hybridizable Discontinuous Galerkin Methods , 2011 .

[7]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[8]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[9]  Omar Ghattas,et al.  Analysis of an hp-Nonconforming Discontinuous Galerkin Spectral Element Method for Wave Propagation , 2012, SIAM J. Numer. Anal..

[10]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[11]  Vít Dolejší,et al.  A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow , 2004 .

[12]  Tan Bui-Thanh,et al.  From Rankine-Hugoniot Condition to a Constructive Derivation of HDG Methods , 2015 .

[13]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[14]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[15]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[16]  Vít Dolejší,et al.  On the discontinuous Galerkin method for the simulation of compressible flow with wide range of Mach numbers , 2007 .

[17]  Yulong Xing,et al.  Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes , 2013, J. Sci. Comput..

[18]  Jean-François Remacle,et al.  An adaptive discretization of shallow‐water equations based on discontinuous Galerkin methods , 2006 .

[19]  F. Dupont,et al.  The Adaptive Spectral Element Method and Comparisons with More Traditional Formulations for Ocean Modeling , 2004 .

[20]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[21]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[22]  Bernardo Cockburn,et al.  A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2010 .

[23]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[24]  Jintao Cui,et al.  An analysis of HDG methods for the Helmholtz equation , 2014 .

[25]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations , 2009 .

[26]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[27]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[28]  Bo Dong,et al.  A Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems , 2009, SIAM J. Sci. Comput..

[29]  Clinton N Dawson,et al.  A discontinuous Galerkin method for two-dimensional flow and transport in shallow water , 2002 .

[30]  Francis X. Giraldo,et al.  A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .

[31]  Tan Bui-Thanh,et al.  From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations , 2015, J. Comput. Phys..

[32]  Ethan J. Kubatko,et al.  hp Discontinuous Galerkin methods for advection dominated problems in shallow water flow , 2006 .

[33]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[34]  Jaime Peraire,et al.  Navier-Stokes Solution Using Hybridizable Discontinuous Galerkin methods , 2011 .

[35]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[36]  F. Li,et al.  Hybridization and Postprocessing Techniques for Mixed Eigenfunctions , 2010, SIAM J. Numer. Anal..

[37]  Peter Monk,et al.  Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation , 2011, J. Sci. Comput..

[38]  Omer San,et al.  HIGH-ORDER ACCURATE SPECTRAL DIFFERENCE METHOD FOR SHALLOW WATER EQUATIONS , 2010 .

[39]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[40]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[41]  Hong Li,et al.  The discontinuous Galerkin finite element method for the 2D shallow water equations , 2001 .