Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances

This paper deals with a variational-based reduced-order model in dynamic substructuring of two coupled structures through a physical dissipative flexible interface. We consider the linear elastodynamic of a dissipative structure composed of two main dissipative substructures perfectly connected through interfaces by a linking substructure. The linking substructure is flexible and is modeled in the context of the general linear viscoelasticity theory, yielding damping and stiffness operators depending on the frequency, while the two main dissipative substructures are modeled in the context of linear elasticity with an additional classical viscous damping modeling which is assumed to be independent of the frequency. We present recent advances adapted to such a situation, which is positioned with respect to an appropriate review that we carry out on the different methods used in dynamic substructuring. It consists in constructing a reduced-order model using the free-interface elastic modes of the two main substructures and, for the linking substructure, an appropriate frequency-independent elastostatic lifting operator and the frequency-dependent fixed-interface vector basis.

[1]  Christian Soize,et al.  Stochastic Models of Uncertainties in Computational Mechanics , 2012 .

[2]  Leonard Meirovitch,et al.  Computational Methods in Structural Dynamics , 1980 .

[3]  W. Benfield,et al.  Vibration Analysis of Structures by Component Mode Substitution , 1970 .

[4]  Damijan Markovic,et al.  Reduction of substructural interface degrees of freedom in flexibility‐based component mode synthesis , 2007 .

[5]  Jia-Ying Tu,et al.  Dynamics, control and real-time issues related to substructuring techniques: application to the testing of isolated structure systems , 2013, J. Syst. Control. Eng..

[6]  S. Rubin Improved Component-Mode Representation for Structural Dynamic Analysis , 1975 .

[7]  Françoise Chatelin Eigenvalues of Matrices: Revised Edition , 2012 .

[8]  Matthew S. Allen,et al.  Experimental modal substructuring to estimate fixed-base modes from tests on a flexible fixture , 2011 .

[9]  Daniel Nelias,et al.  Optimal component mode synthesis for medium frequency problem , 2011 .

[10]  Christian Soize,et al.  Clarification about Component Mode Synthesis Methods for Substructures with Physical Flexible Interfaces , 2014 .

[11]  Gregory M. Hulbert,et al.  Calculation of Component Mode Synthesis Matrices From Measured Frequency Response Functions, Part 1: Theory , 1998 .

[12]  D. Rixen,et al.  Generalized Methodology for Assembly and Reduction of Component Models for Dynamic Substructuring , 2011 .

[13]  Hojjat Adeli,et al.  Recent Advances on Vibration Control of Structures Under Dynamic Loading , 2013 .

[14]  Christian Soize,et al.  Dynamic Substructuring of Damped Structures Using Singular Value Decomposition , 1997 .

[15]  David A. Robb,et al.  A new approach to modal-based structural dynamic model updating and joint identification , 1995 .

[16]  Christian Soize,et al.  Advanced Computational Dissipative Structural Acoustics and Fluid-Structure Interaction in Low-and Medium-Frequency Domains. Reduced-Order Models and Uncertainty Quantification , 2012 .

[17]  D. Rixen A dual Craig-Bampton method for dynamic substructuring , 2004 .

[18]  Aldo A. Ferri,et al.  Probabilistic component mode synthesis of nondeterministic substructures , 1996 .

[19]  David Gorsich,et al.  Parametric reduced-order models for predicting the vibration response of complex structures with component damage and uncertainties , 2011 .

[20]  Christina Kluge,et al.  Fluid Structure Interaction , 2016 .

[21]  Christian Soize,et al.  Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model , 2003 .

[22]  Matthew S. Allen,et al.  Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections , 2010 .

[23]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[24]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[25]  H. J. M. Geijselaers,et al.  Dynamic substructuring and reanalysis methods in a surrogate-based design optimization environment , 2012 .

[26]  Roger Ghanem,et al.  A substructure approach for the midfrequency vibration of stochastic systems. , 2003, The Journal of the Acoustical Society of America.

[27]  Gregory M. Hulbert,et al.  Calculation of Component Mode Synthesis Matrices From Measured Frequency Response Functions, Part 2: Application , 1995 .

[28]  Daniel J. Inman,et al.  Vibration with Control: Inman/Vibration with Control , 2006 .

[29]  Charbel Farhat,et al.  Partitioned analysis of coupled mechanical systems , 2001 .

[30]  J. Sanchez Hubert,et al.  Vibration and Coupling of Continuous Systems: Asymptotic Methods , 1989 .

[31]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[32]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[33]  R. Macneal A hybrid method of component mode synthesis , 1971 .

[34]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[35]  B. N. Agrawal,et al.  Mode synthesis technique for dynamic analysis of structures , 1976 .

[36]  Etienne Balmes,et al.  Optimal Ritz vectors for component mode synthesis using the singular value decomposition , 1996 .

[37]  Charbel Farhat,et al.  On a component mode synthesis method and its application to incompatible substructures , 1994 .

[38]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[39]  Kumar K. Tamma,et al.  Advances in Computational Dynamics of Particles, Materials and Structures , 2012 .

[40]  D. J. Ewins,et al.  Substructure synthesis via elastic media. Part I : Joint identification , 2000 .

[41]  Christian Soize,et al.  Nonparametric stochastic modeling of structures with uncertain boundary conditions / coupling between substructures , 2013 .

[42]  D. Inman Vibration control , 2018, Advanced Applications in Acoustics, Noise and Vibration.

[43]  Nils-Erik Hörlin,et al.  Component Mode Synthesis Using Undeformed Interface Coupling Modes to Connect Soft and Stiff Substructures , 2013 .

[44]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[45]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[46]  L. G. Jaeger,et al.  Dynamics of structures , 1990 .

[47]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[48]  W. Ledermann,et al.  Eigenvalues of matrices , 2012 .

[49]  Klaus-Jürgen Bathe,et al.  On nonlinear dynamic analysis using substructuring and mode superposition , 1981 .

[50]  Yong-hwa Park,et al.  Partitioned Component Mode Synthesis via a Flexibility Approach , 2004 .

[51]  J. H. Argyris,et al.  The Analysis of Fuselages of Arbitrary Cross‐section and Taper , 1959 .

[52]  W. Hurty Dynamic Analysis of Structural Systems Using Component Modes , 1965 .

[53]  Colin A. Taylor,et al.  Adaptive Control Strategy for Dynamic Substructuring Tests , 2007 .

[54]  Jiyuan Tu,et al.  Computational Fluid Structure Interaction , 2015 .

[55]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[56]  Christian Soize,et al.  Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation , 2012, Comput. Math. Appl..

[57]  R. Hintz Analytical Methods in Component Modal Synthesis , 1975 .

[58]  A. L. Hale,et al.  On the Substructure Synthesis Method , 1981 .

[59]  Andrew Y. T. Leung,et al.  Dynamic Stiffness and Substructures , 1993 .

[60]  W. A. Benfield,et al.  Vibration Analysis of Structures by Component Mode Substitution , 1971 .

[61]  Antonio Paulo Vale Urgueira,et al.  Dynamic analysis of coupled structures using experimental data , 1990 .

[62]  Frédéric Bourquin,et al.  Numerical study of an intrinsic component mode synthesis method , 1992 .

[63]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[64]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[65]  Walter C. Hurty,et al.  Vibrations of Structural Systems by Component Mode Synthesis , 1960 .

[66]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[67]  A. L. Hale,et al.  A Procedure for Improving Discrete Substructure Representation in Dynamic Synthesis , 1982 .

[68]  L. Meirovitch,et al.  Rayleigh-Ritz Based Substructure Synthesis for Flexible Multibody Systems , 1991 .

[69]  K. Bathe Finite Element Procedures , 1995 .

[70]  Harold S. Park,et al.  Nano Mechanics and Materials: Theory, Multiscale Methods and Applications , 2006 .

[71]  Louis Jezequel,et al.  A hybrid method of modal synthesis using vibration tests , 1985 .

[72]  Christian Soize,et al.  Dynamic Substructuring in the Medium-Frequency Range , 2000 .

[73]  Christian Soize,et al.  Stochastic reduced-order model in low-frequency dynamics in presence of numerous local elastic modes , 2011 .

[74]  Edwin Reynders,et al.  System Identification Methods for (Operational) Modal Analysis: Review and Comparison , 2012 .

[75]  J. H. Argyris,et al.  The Analysis of Fuselages of Arbitrary Cross‐section and Taper: A DSIR Sponsored Research Programme on the Development and Application of the Matrix Force Method and the Digital Computer , 1961 .

[76]  Timothy P. Waters,et al.  Component mode synthesis as a framework for uncertainty analysis , 2009 .

[77]  R. Ohayon,et al.  Substructure variational analysis of the vibrations of coupled fluid–structure systems. Finite element results , 1979 .

[78]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[79]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[80]  Mandy Berg Vibration And Coupling Of Continuous Systems Asymptotic Methods , 2016 .

[81]  Edward J. Kuhar,et al.  Dynamic Transformation Method for Modal Synthesis , 1974 .

[82]  C. Pierre,et al.  Characteristic Constraint Modes for Component Mode Synthesis , 2001 .

[83]  D. Rixen,et al.  General Framework for Dynamic Substructuring: History, Review and Classification of Techniques , 2008 .

[84]  Peter J. Chen,et al.  Theory of viscoelasticity, plasticity, elastic waves, and elastic stability , 1984 .

[85]  Christian Soize,et al.  Structural partitioning of complex structures in the medium-frequency range. An application to an automotive vehicle , 2011 .

[86]  J. S. Przemieniecki Matrix Structural Analysis of Substructures , 1963 .

[87]  B. Irons Structural eigenvalue problems - elimination of unwanted variables , 1965 .

[88]  L. Suárez,et al.  Improved Fixed Interface Method for Modal Synthesis , 1992 .

[89]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[90]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.