MORTARING THE TWO-DIMENSIONAL EDGE FINITE ELEMENTS FOR THE DISCRETIZATION OF SOME ELECTROMAGNETIC MODELS

We describe the mortar element method for the two-dimensional edge finite elements of class H(curl). These finite elements are currently used for the discretization of various models coming from the Maxwell equations and using them in a mortar framework has several interesting applications in the electromagnetic and electrotechnical domains. We develop some technical tools necessary to perform the numerical analysis of this approach. Then, we prove some optimal approximation results and illustrate the theory by some numerical experiences.

[1]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[2]  Francesca Rapetti Approximation des équations de la magnétodynamique en domaine tournant par la méthode des éléments avec joints , 2000 .

[3]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[4]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[5]  Andrea Toselli,et al.  A FETI Preconditioner for Two Dimensional Edge Element Approximations of Maxwell's Equations on Nonmatching Grids , 2001, SIAM J. Sci. Comput..

[6]  Zakaria Belhachmi Méthodes d'éléments spectraux avec joints pour la résolution de problèmes d'ordre quatre , 1994 .

[7]  Abdellatif Agouzal,et al.  Une méthode d'éléments finis hybrides en décomposition de domaines , 1995 .

[8]  Francesca Rapetti,et al.  Eddy-current calculations in three-dimensional moving structures , 2002 .

[9]  Francesca Rapetti The mortar edge element method on non‐matching grids for eddy current calculations in moving structures , 2001 .

[10]  Francesca Rapetti,et al.  Simulation of a magneto-mechanical damping machine: analysis, discretization, results☆ , 2002 .

[11]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[12]  Yvon Maday,et al.  Inf-sup conditions for the mortar spectral element discretization of the Stokes problem , 2000, Numerische Mathematik.

[13]  A. Toselli Domain Decomposition Methods for Vector Field Problems , 1999 .

[14]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[15]  Faker Ben Belgacem,et al.  The Mixed Mortar Finite Element Method for the Incompressible Stokes Problem: Convergence Analysis , 2000, SIAM J. Numer. Anal..

[16]  Franco Brezzi,et al.  Error estimates for the three-field formulation with bubble stabilization , 2001, Math. Comput..

[17]  O. Pironneau,et al.  A fast solver for Navier-Stokes equations in the lamina regime using mortar finite element and boundary element methods , 1995 .

[18]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[19]  A. Buffa,et al.  A Sliding Mesh-Mortar Method for Two Dimensional Eddy Currents Model for Electric Engines , 1999 .

[20]  Silvia Bertoluzza,et al.  The Mortar method in the wavelet context , 2001 .

[21]  Iterative Substructuring Preconditioners for the Mortar FiniteElement Method in Two DimensionsY , 1997 .

[22]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[23]  Jian-Ming Jin,et al.  The Finite Element Method in Electromagnetics , 1993 .

[24]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[25]  P. Degond,et al.  Numerical Approximation of the Maxwell Equations in Inhomogeneous Media by aP1Conforming Finite Element Method , 1996 .

[26]  Olof B. Widlund,et al.  Iterative Substructuring Preconditioners For Mortar Element Methods In Two Dimensions , 1997 .

[27]  Faker Ben Belgacem Discrétisations 3D non conformes par la méthode de décomposition de domaine des éléments avec joints : analyse mathématique et mise en oeuvre pour le problème de Poisson , 1993 .

[28]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[29]  F. BEN BELGACEM,et al.  The Mortar Finite Element Method for 3D Maxwell Equations: First Results , 2001, SIAM J. Numer. Anal..

[30]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[31]  Frédéric Hecht,et al.  Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..

[32]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[33]  Francesca Rapetti,et al.  The Mortar Edge Element Method in Three Dimensions: Application to Magnetostatics , 2002, SIAM J. Sci. Comput..

[34]  Yvon Maday,et al.  A spectral element methodology tuned to parallel implementations , 1994 .

[35]  R. Herbin,et al.  An Error Estimate for a Nite Volume Scheme for a Diiusion Convection Problem on a Triangular Mesh , 1995 .