Morphological changes induced by phospholipase C and by sphingomyelinase on large unilamellar vesicles: a cryo-transmission electron microscopy study of liposome fusion.

[1]  F. Goñi,et al.  Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. , 1996, Biochemistry.

[2]  M. Ruiz-Argüello,et al.  Different Effects of Enzyme-generated Ceramides and Diacylglycerols in Phospholipid Membrane Fusion and Leakage* , 1996, The Journal of Biological Chemistry.

[3]  M. Almgren,et al.  Cubic Lipid−Water Phase Dispersed into Submicron Particles , 1996 .

[4]  F. Goñi,et al.  Dual inhibitory effect of gangliosides on phospholipase C-promoted fusion of lipidic vesicles. , 1996, Biochemistry.

[5]  F. Goñi,et al.  Diacylglycerol and the promotion of lamellar-hexagonal and lamellar-isotropic phase transitions in lipids: implications for membrane fusion. , 1996, Biophysical journal.

[6]  K. Edwards,et al.  Cryotransmission electron microscopy of thin vitrified samples , 1996 .

[7]  P. Quinn,et al.  Cubic phases in hydrated 1:1 and 1:2 dipalmitoylphosphatidylcholine-dipalmitoylglycerol mixtures. , 1996, Biophysical journal.

[8]  M. Karhanek,et al.  Comparison of transient and successful fusion pores connecting influenza hemagglutinin expressing cells to planar membranes , 1995, The Journal of General Physiology.

[9]  R. W. Ashton,et al.  Effects of temperature and glycerides on the enhancement of Agkistrodon piscivorus piscivorus phospholipase A2 activity by lysolecithin and palmitic acid. , 1995, Biochemistry.

[10]  J. Zimmerberg,et al.  The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. , 1995, Biophysical journal.

[11]  J. Zimmerberg,et al.  Bending membranes to the task: structural intermediates in bilayer fusion. , 1995, Current opinion in structural biology.

[12]  J. L. Nieva,et al.  Topological properties of two cubic phases of a phospholipid : cholesterol: diacylglycerol aqueous system and their possible implications in the phospholipase C‐induced liposome fusion , 1995, FEBS letters.

[13]  G. Lindblom,et al.  Phase diagram of soybean phosphatidylcholine-diacylglycerol-water studied by x-ray diffraction and 31P- and pulsed field gradient 1H-NMR: evidence for reversed micelles in the cubic phase. , 1995, Biophysical journal.

[14]  J. Zimmerberg,et al.  An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes , 1994, Journal of virology.

[15]  W. R. Burack,et al.  Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. , 1994, Chemistry and physics of lipids.

[16]  W. J. Green,et al.  The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. , 1994, Biophysical journal.

[17]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[18]  Steven S. Vogel,et al.  Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. , 1993, The Journal of biological chemistry.

[19]  D. Siegel,et al.  Energetics of intermediates in membrane fusion: comparison of stalk and inverted micellar intermediate mechanisms. , 1993, Biophysical journal.

[20]  Steven S. Vogel,et al.  Lysolipids reversibly inhibit Ca2+‐, GTP‐ and pH‐dependent fusion of biological membranes , 1993, FEBS letters.

[21]  F. Goñi,et al.  Phospholipase C-promoted membrane fusion. Retroinhibition by the end-product diacylglycerol. , 1993, Biochemistry.

[22]  Steven S. Vogel,et al.  Mechanisms of membrane fusion. , 1993, Annual review of biophysics and biomolecular structure.

[23]  R. Zidovetzki,et al.  Effect of diacylglycerols on the activity of cobra venom, bee venom, and pig pancreatic phospholipases A2. , 1992, Biochemistry.

[24]  J. Israelachvili,et al.  Role of hydrophobic forces in bilayer adhesion and fusion. , 1992, Biochemistry.

[25]  R. Zidovetzki,et al.  Interactions of saturated diacylglycerols with phosphatidylcholine bilayers: A 2H NMR study. , 1992, Biochemistry.

[26]  J. L. Nieva,et al.  Phospholipase C activity-induced fusion of pure lipid model membranes. A freeze fracture study. , 1991, Biochimica et biophysica acta.

[27]  S. Hui,et al.  Bilayer packing stress and defects in mixed dilinoleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine and their susceptibility to phospholipase A2. , 1991, Biochemistry.

[28]  A. Verkleij,et al.  Lipid polymorphism as observed by cryo-electron microscopy. , 1991, Biochimica et biophysica acta.

[29]  D. Papahadjopoulos,et al.  Membrane contact, fusion, and hexagonal (HII) transitions in phosphatidylethanolamine liposomes. , 1986, Biochemistry.

[30]  F. Goñi,et al.  Liposome fusion catalytically induced by phospholipase C. , 1989, Biochemistry.

[31]  Y. Talmon,et al.  Intermediates in membrane fusion and bilayer/nonbilayer phase transitions imaged by time-resolved cryo-transmission electron microscopy. , 1989, Biophysical journal.

[32]  L. J. Lis,et al.  Membrane fusion and inverted phases. , 1989, Biochemistry.

[33]  L. J. Lis,et al.  Physiological levels of diacylglycerols in phospholipid membranes induce membrane fusion and stabilize inverted phases. , 1989, Biochemistry.

[34]  K. Edwards,et al.  Effects of Triton X-100 on sonicated lecithin vesicles , 1989 .

[35]  L E Scriven,et al.  Controlled environment vitrification system: an improved sample preparation technique. , 1988, Journal of electron microscopy technique.

[36]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[37]  Mahendra K. Jain,et al.  Dehydration of the lipid-protein microinterface on binding of phospholipase A2 to lipid bilayers. , 1987, Biochimica et biophysica acta.

[38]  J. Bentz,et al.  Membrane fusion: Kinetics and mechanisms , 1987 .

[39]  F. Szoka,et al.  Fusion of phosphatidylethanolamine-containing liposomes and mechanism of the L alpha-HII phase transition. , 1986, Biochemistry.

[40]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[41]  R. Rand,et al.  Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. , 1986, Biochemistry.

[42]  F. Szoka,et al.  Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature. , 1986, Biochemistry.

[43]  S. Hui,et al.  Correlation between bilayer destabilization and activity enhancement by diacylglycerols in reconstituted Ca-ATPase vesicles. , 1986, Archives of biochemistry and biophysics.

[44]  R. Epand Diacylglycerols, lysolecithin, or hydrocarbons markedly alter the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines. , 1985, Biochemistry.

[45]  D. Hoekstra,et al.  Fluorescence method for measuring the kinetics of fusion between biological membranes. , 1984, Biochemistry.

[46]  D. Papahadjopoulos,et al.  Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents , 1979, Nature.

[47]  A. Verkleij,et al.  Lipidic intramembranous particles , 1979, Nature.

[48]  H Meiners,et al.  [Effects of temperature]. , 1973, ZWR.

[49]  K. Adachi,et al.  A new method of preparation of a self-perforated micro plastic grid and its application. , 1965, Journal of electron microscopy.