β-Barrel membrane protein folding and structure viewed through the lens of α-hemolysin

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. Bhakdi,et al.  On the mechanism of membrane damage by Staphylococcus aureus alpha- toxin , 1981, The Journal of cell biology.

[3]  S Bhakdi,et al.  Staphylococcal alpha-toxin: oligomerization of hydrophilic monomers to form amphiphilic hexamers induced through contact with deoxycholate detergent micelles. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[4]  H. Bayley,et al.  Secondary structure and assembly mechanism of an oligomeric channel protein. , 1985, Biochemistry.

[5]  H. Ikigai,et al.  Conformational alteration in alpha-toxin from Staphylococcus aureus concomitant with the transformation of the water-soluble monomer to the membrane oligomer. , 1985, Biochemical and biophysical research communications.

[6]  K. Leonard,et al.  The Staphylococcus aureus alpha-toxin channel complex and the effect of Ca2+ ions on its interaction with lipid layers. , 1992, Journal of structural biology.

[7]  H. Bayley,et al.  Assembly of the oligomeric membrane pore formed by Staphylococcal alpha-hemolysin examined by truncation mutagenesis. , 1992, The Journal of biological chemistry.

[8]  H. Bayley,et al.  Functional complementation of staphylococcal alpha-hemolysin fragments. Overlaps, nicks, and gaps in the glycine-rich loop. , 1993, The Journal of biological chemistry.

[9]  H. Danbara,et al.  A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane , 1993, Journal of bacteriology.

[10]  M. Thelestam,et al.  The projection structure of Perfringolysin O (Clostridium perfringens θ‐toxin) , 1993 .

[11]  H. Bayley,et al.  A pore-forming protein with a metal-actuated switch. , 1994, Protein engineering.

[12]  J. Gouaux,et al.  Subunit stoichiometry of staphylococcal alpha-hemolysin in crystals and on membranes: a heptameric transmembrane pore. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Bayley,et al.  A pore-forming protein with a protease-activated trigger. , 1994, Protein engineering.

[14]  S. Bhakdi,et al.  Identification of a putative membrane-inserted segment in the alpha-toxin of Staphylococcus aureus. , 1994, Biochemistry.

[15]  S. Bhakdi,et al.  Correct oligomerization is a prerequisite for insertion of the central molecular domain of staphylococcal alpha-toxin into the lipid bilayer. , 1995, Biochimica et biophysica acta.

[16]  H. Bayley,et al.  An intermediate in the assembly of a pore-forming protein trapped with a genetically-engineered switch. , 1995, Chemistry & biology.

[17]  H. Bayley,et al.  A photogenerated pore-forming protein. , 1995, Chemistry & biology.

[18]  F. Jähnig,et al.  Kinetics of Folding and Membrane Insertion of a β-Barrel Membrane Protein (*) , 1995, The Journal of Biological Chemistry.

[19]  H. Bayley,et al.  Key Residues for Membrane Binding, Oligomerization, and Pore Forming Activity of Staphylococcal α-Hemolysin Identified by Cysteine Scanning Mutagenesis and Targeted Chemical Modification (*) , 1995, The Journal of Biological Chemistry.

[20]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[21]  H. Bayley,et al.  Molecular architecture of a toxin pore: a 15‐residue sequence lines the transmembrane channel of staphylococcal alpha‐toxin. , 1996, The EMBO journal.

[22]  L. Tamm,et al.  Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. , 1996, Biochemistry.

[23]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[24]  C. Lesieur,et al.  Conformational Changes Due to Membrane Binding and Channel Formation by Staphylococcal α-Toxin* , 1997, The Journal of Biological Chemistry.

[25]  R. Liddington,et al.  Crystal structure of the anthrax toxin protective antigen , 1997, Nature.

[26]  Y. Kamio,et al.  Molecular Biology of the Pore-forming Cytolysins from Staphylococcus aureus, α- and γ-Hemolysins and Leukocidin , 1997 .

[27]  Y. Kamio,et al.  Assembly of Staphylococcus aureus γ‐hemolysin into a pore‐forming ring‐shaped complex on the surface of human erythrocytes , 1997, FEBS letters.

[28]  M. Raje,et al.  The Role of the Amino Terminus in the Kinetics and Assembly of α-Hemolysin of Staphylococcus aureus * , 1997, The Journal of Biological Chemistry.

[29]  H. Bayley,et al.  The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. , 1997, Biochemistry.

[30]  E. Gouaux,et al.  α‐Hemolysin, γ‐hemolysin, and leukocidin from Staphylococcus aureus: Distant in sequence but similar in structure , 1997 .

[31]  H. Bayley,et al.  Transmembrane beta-barrel of staphylococcal alpha-toxin forms in sensitive but not in resistant cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Bhakdi,et al.  Staphylococcal alpha-toxin: formation of the heptameric pore is partially cooperative and proceeds through multiple intermediate stages. , 1997, Biochemistry.

[33]  S. Bhakdi,et al.  Staphylococcal alpha-toxin: the role of the N-terminus in formation of the heptameric pore -- a fluorescence study. , 1997, Biochimica et biophysica acta.

[34]  S H White,et al.  Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. , 1998, Journal of molecular biology.

[35]  R. Collier,et al.  Identification of residues lining the anthrax protective antigen channel. , 1998, Biochemistry.

[36]  Z. Shao,et al.  Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. , 1998, Journal of molecular biology.

[37]  E. Gouaux α-Hemolysin fromStaphylococcus aureus:An Archetype of β-Barrel, Channel-Forming Toxins , 1998 .

[38]  R. Arni,et al.  Tertiary structural changes of the alpha-hemolysin from Staphylococcus aureus on association with liposome membranes. , 1998, Archives of biochemistry and biophysics.

[39]  S H White,et al.  Hydrophobic interactions of peptides with membrane interfaces. , 1998, Biochimica et biophysica acta.

[40]  Kenji Yokota,et al.  Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel , 1999, Nature Structural Biology.

[41]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[42]  D. Branton,et al.  Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. , 1999, Biophysical journal.

[43]  Jie Yang,et al.  Heptameric structures of two α‐hemolysin mutants imaged with in situ atomic force microscopy , 1999, Microscopy research and technique.

[44]  D. Ladant,et al.  The comprehensive sourcebook of bacterial protein toxins , 1999 .

[45]  A. K. Lala,et al.  Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. , 1999, Biophysical journal.

[46]  P. Booth,et al.  Membrane protein folding. , 1999, Current opinion in structural biology.

[47]  S. Buchanan,et al.  Beta-barrel proteins from bacterial outer membranes: structure, function and refolding. , 1999, Current opinion in structural biology.

[48]  E. Courcelle,et al.  The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. , 1999, Structure.

[49]  J. Killian,et al.  How proteins adapt to a membrane-water interface. , 2000, Trends in biochemical sciences.

[50]  S. Bhakdi,et al.  Electrophysiological evidence for heptameric stoichiometry of ion channels formed by Staphylococcus aureus alpha‐toxin in planar lipid bilayers , 2000, Molecular microbiology.

[51]  M. Saraste,et al.  FEBS Lett , 2000 .

[52]  S. Bhakdi,et al.  Membrane insertion of the heptameric staphylococcal alpha-toxin pore. A domino-like structural transition that is allosterically modulated by the target cell membrane. , 2001, The Journal of biological chemistry.

[53]  S. White,et al.  How Membranes Shape Protein Structure* , 2001, The Journal of Biological Chemistry.

[54]  L. Mourey,et al.  Staphylococcal pore-forming toxins. , 2001, Current topics in microbiology and immunology.

[55]  S. Henrickson,et al.  Simultaneous multianalyte detection with a nanometer-scale pore. , 2001, Analytical chemistry.

[56]  L. Tamm,et al.  Structure and Assembly of β-Barrel Membrane Proteins* 210 , 2001, The Journal of Biological Chemistry.

[57]  W. Wimley,et al.  Folding of beta-sheets in membranes: specificity and promiscuity in peptide model systems. , 2001, Journal of molecular biology.

[58]  Y. Kamio,et al.  Stochastic Assembly of Two-Component Staphylococcal γ-Hemolysin into Heteroheptameric Transmembrane Pores with Alternate Subunit Arrangements in Ratios of 3:4 and 4:3 , 2002, Journal of bacteriology.

[59]  H. Bayley,et al.  Subunit composition of a bicomponent toxin: Staphylococcal leukocidin forms an octameric transmembrane pore , 2002, Protein science : a publication of the Protein Society.

[60]  S. Bhakdi,et al.  Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin , 1995, Medical Microbiology and Immunology.