Analysis of the domain mapping method for elliptic diffusion problems on random domains
暂无分享,去创建一个
Helmut Harbrecht | Michael Peters | Markus Siebenmorgen | H. Harbrecht | M. Peters | M. Siebenmorgen
[1] Daniel M. Tartakovsky,et al. Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..
[2] HELMUT HARBRECHT,et al. On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion , 2016, Math. Comput..
[3] Herbert S. Wilf,et al. Generating functionology , 1990 .
[4] F. Nobile,et al. Analytic regularity and collocation approximation for PDEs with random domain deformations , 2014 .
[5] Andy J. Keane,et al. Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains , 2011 .
[6] Xiaoqun Wang. A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..
[7] M. Loève,et al. Elementary Probability Theory , 1977 .
[8] Reinhold Schneider,et al. Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.
[9] Michael Griebel,et al. Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .
[10] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[11] Frances Y. Kuo,et al. CORRECTION TO “QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND” , 2012, The ANZIAM Journal.
[12] Daniel M. Tartakovsky,et al. Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..
[13] Will Light,et al. Approximation Theory in Tensor Product Spaces , 1985 .
[14] Claudio Canuto,et al. A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.
[15] Jens Markus Melenk,et al. Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .
[16] Fabio Nobile,et al. An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[17] H. Wilf. generatingfunctionology: Third Edition , 1990 .
[18] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[19] C J Isham,et al. Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .
[20] H. Harbrecht,et al. On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .
[21] J. Simon. Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .
[22] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[23] R. Tempone,et al. ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .
[24] Fabio Nobile,et al. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..
[25] G. Constantine,et al. A Multivariate Faa di Bruno Formula with Applications , 1996 .
[26] Dietrich Braess,et al. Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .
[27] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[28] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[29] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[30] Michael Reed,et al. Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .
[31] R. Holmes. Smoothness of certain metric projections on Hilbert space , 1973 .
[32] H. Alt. Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .
[33] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[34] Helmut Harbrecht,et al. First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .
[35] J. Zou,et al. Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .
[36] Christoph Schwab,et al. Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..
[37] M. Lenoir. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .
[38] Helmut Harbrecht,et al. Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..