Analysis of the domain mapping method for elliptic diffusion problems on random domains

In this article, we provide a rigorous analysis of the solution to elliptic diffusion problems on random domains. In particular, based on the decay of the Karhunen-Loève expansion of the domain perturbation field, we establish decay rates for the derivatives of the random solution that are independent of the stochastic dimension. For the implementation of a related approximation scheme, like quasi-Monte Carlo quadrature, stochastic collocation, etc., we propose parametric finite elements to compute the solution of the diffusion problem on each individual realization of the domain generated by the perturbation field. This simplifies the implementation and yields a non-intrusive approach. Having this machinery at hand, we can easily transfer it to stochastic interface problems. The theoretical findings are complemented by numerical examples for both, stochastic interface problems and boundary value problems on random domains.

[1]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[2]  HELMUT HARBRECHT,et al.  On the quasi-Monte Carlo method with Halton points for elliptic PDEs with log-normal diffusion , 2016, Math. Comput..

[3]  Herbert S. Wilf,et al.  Generating functionology , 1990 .

[4]  F. Nobile,et al.  Analytic regularity and collocation approximation for PDEs with random domain deformations , 2014 .

[5]  Andy J. Keane,et al.  Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains , 2011 .

[6]  Xiaoqun Wang A Constructive Approach to Strong Tractability Using Quasi-Monte Carlo Algorithms , 2002, J. Complex..

[7]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[8]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[9]  Michael Griebel,et al.  Approximation of bi-variate functions: singular value decomposition versus sparse grids , 2014 .

[10]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[11]  Frances Y. Kuo,et al.  CORRECTION TO “QUASI-MONTE CARLO METHODS FOR HIGH-DIMENSIONAL INTEGRATION: THE STANDARD (WEIGHTED HILBERT SPACE) SETTING AND BEYOND” , 2012, The ANZIAM Journal.

[12]  Daniel M. Tartakovsky,et al.  Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..

[13]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[14]  Claudio Canuto,et al.  A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.

[15]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[16]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[17]  H. Wilf generatingfunctionology: Third Edition , 1990 .

[18]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[19]  C J Isham,et al.  Methods of Modern Mathematical Physics, Vol 1: Functional Analysis , 1972 .

[20]  H. Harbrecht,et al.  On the low-rank approximation by the pivoted Cholesky decomposition , 2012 .

[21]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[22]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[23]  R. Tempone,et al.  ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS , 2012 .

[24]  Fabio Nobile,et al.  Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..

[25]  G. Constantine,et al.  A Multivariate Faa di Bruno Formula with Applications , 1996 .

[26]  Dietrich Braess,et al.  Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .

[27]  R. Kadison,et al.  Fundamentals of the Theory of Operator Algebras , 1983 .

[28]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[29]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[30]  Michael Reed,et al.  Methods of modern mathematical physics (vol.) I : functional analysis / Reed Michael, Barry Simon , 1980 .

[31]  R. Holmes Smoothness of certain metric projections on Hilbert space , 1973 .

[32]  H. Alt Lineare Funktionalanalysis : eine anwendungsorientierte Einführung , 2002 .

[33]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[34]  Helmut Harbrecht,et al.  First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .

[35]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[36]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[37]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[38]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..