Forecasting ground-based sensitivity to the Rayleigh scattering of the CMB in the presence of astrophysical foregrounds
暂无分享,去创建一个
A. Bender | B. Benson | J. Carlstrom | Z. Pan | R. Gualtieri | C. Reichardt | T. Crawford | F. Bianchini | S. Raghunathan | Y. Omori | K. Dibert | A. Anderson | W. L. K. Wu | W. Wu
[1] A. Anderson,et al. Development of MKIDs for Measurement of the Cosmic Microwave Background with the South Pole Telescope , 2021, Journal of Low Temperature Physics.
[2] J. Vieira,et al. Constraining Cluster Virialization Mechanism and Cosmology Using Thermal-SZ-selected Clusters from Future CMB Surveys , 2021, The Astrophysical Journal.
[3] Adrian T. Lee,et al. CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.
[4] The Python Sky Model 3 software , 2021, J. Open Source Softw..
[5] P. Meerburg,et al. Primordial information content of Rayleigh anisotropies , 2020, 2010.10481.
[6] N. Battaglia,et al. Cosmology with Rayleigh scattering of the cosmic microwave background , 2020, Journal of Cosmology and Astroparticle Physics.
[7] J. Austermann,et al. Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope , 2019, Journal of Low Temperature Physics.
[8] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[9] Adrian T. Lee,et al. Fractional polarization of extragalactic sources in the 500 deg2 SPTpol survey , 2019, Monthly Notices of the Royal Astronomical Society.
[10] J. Mohr,et al. Measurements of the Cross-spectra of the Cosmic Infrared and Microwave Backgrounds from 95 to 1200 GHz , 2018, The Astrophysical Journal.
[11] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[12] Edward J. Wollack,et al. The Atacama Cosmology Telescope: two-season ACTPol extragalactic point sources and their polarization properties , 2018, Monthly Notices of the Royal Astronomical Society.
[13] P. A. R. Ade,et al. Year two instrument status of the SPT-3G cosmic microwave background receiver , 2018, Astronomical Telescopes + Instrumentation.
[14] C. A. Oxborrow,et al. Planck2018 results , 2018, Astronomy & Astrophysics.
[15] M. Remazeilles,et al. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity , 2018, 1802.10101.
[16] David Alonso,et al. The Python Sky Model: software for simulating the Galactic microwave sky , 2016, 1608.02841.
[17] Kris Sigurdson,et al. Effects of Rayleigh scattering on the CMB and cosmic structure , 2014, 1410.6484.
[18] M. Lueker,et al. A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1408.3161.
[19] Antony Lewis,et al. Rayleigh scattering: blue sky thinking for future CMB observations , 2013, 1307.8148.
[20] Adrian T. Lee,et al. EXTRAGALACTIC MILLIMETER-WAVE POINT-SOURCE CATALOG, NUMBER COUNTS AND STATISTICS FROM 771 deg2 OF THE SPT-SZ SURVEY , 2013, 1306.3470.
[21] Z. Cai,et al. A HYBRID MODEL FOR THE EVOLUTION OF GALAXIES AND ACTIVE GALACTIC NUCLEI IN THE INFRARED , 2013, 1303.2335.
[22] J. Aumont,et al. The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths , 2012, 1207.3675.
[23] Z. Haiman,et al. Improved models for cosmic infrared background anisotropies: new constraints on the infrared galaxy population , 2011, 1109.1522.
[24] Hee-Won Lee,et al. Rayleigh scattering cross-section redward of Lyα by atomic hydrogen , 2004, astro-ph/0402023.
[25] H. Dole,et al. Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.
[26] D. Spergel,et al. Rayleigh Scattering and Microwave Background Fluctuations , 2001, astro-ph/0103149.
[27] K. Ganga,et al. A Determination of the Hubble Constant Using Measurements of X-Ray Emission and the Sunyaev-Zeldovich Effect at Millimeter Wavelengths in the Cluster Abell 1835 , 2000 .
[28] P. A. R. Ade,et al. The Sunyaev-Zeldovich Infrared Experiment: A Millimeter-Wave Receiver for Cluster Cosmology , 1997, astro-ph/9702222.