Bilinear Optical Systems

Nonlinear optical systems described by the third term of a Volterra series (i.e. bilinear optical systems) are shown to be represented by a Wigner distribution function or ambiguity function. This treatment allows a description of bilinear systems in terms of a ray picture.

[1]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[2]  H. H. Hopkins,et al.  The concept of partial coherence in optics , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[4]  A. W. Lohmann,et al.  Space-Variant Image Formation* , 1965 .

[5]  A. Papoulis Ambiguity function in Fourier optics , 1974 .

[6]  Joseph W. Goodman,et al.  Reconstructions of images of partially coherent objects from samples of mutual intensity , 1977 .

[7]  Jean-Pierre Guigay The ambiguity function in diffraction and isoplanatic imaging by partially coherent beams , 1978 .

[8]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .

[9]  B E Saleh Bilinear processing of 1-D signals by use of linear 2-D coherent optical processors. , 1978, Applied optics.

[10]  Mj Martin Bastiaans Transport Equations for the Wigner Distribution Function in an Inhomogeneous and Dispersive Medium , 1979 .

[11]  Mj Martin Bastiaans The Wigner distribution function and Hamilton's characteristics of a geometric-optical system , 1979 .

[12]  B. Saleh Optical Bilinear Transformations: General Properties , 1979 .

[13]  Bahaa E. A. Saleh,et al.  Linear restoration of bilinearly distorted images , 1980 .

[14]  Linearity of quasi-homogeneous partially coherent imagery , 1982 .

[15]  A. Lohmann,et al.  Wigner distribution function display of complex 1D signals , 1982 .

[16]  A. Lohmann,et al.  The ambiguity function as a polar display of the OTF , 1983 .

[17]  K. Brenner,et al.  Ambiguity Function and Wigner Distribution Function Applied to Partially Coherent Imagery , 1984 .