Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution

This paper is a light microscopical study describing the detailed morphology and quantitative distribution of local circuit neurones in areas 25, 32, and 24b of the medial prefrontal cortex (mPFC) in the rat. Cortical interneurones were identified immunocytochemically by their expression of calretinin (CR), parvalbumin (PV), and calbindin D‐28k (CB) immunoreactivity. Neurones immunoreactive for γ‐aminobutyric acid (GABA) were also investigated, as were interneurones containing reduced nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity. Several distinct classes of CR+, PV+, and CB+ neurones were identified; the most frequent were: bipolar/bitufted CR+ cells in upper layer 3; multipolar PV+ neurones in layers 3 and 5; and bitufted/multipolar CB+ neurones in lower layer 3. CB+ neurones resembling Martinotti and neurogliaform cells were also present in layers 5/6. The morphologies and depth distributions of each cell type were consistent across the three areas of mPFC studied.

[1]  V. Meskenaite,et al.  Calretinin‐immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis , 1997, The Journal of comparative neurology.

[2]  J. Rogers Immunohistochemical markers in rat cortex: co-localization of calretinin and calbindin-D28k with neuropeptides and GABA , 1992, Brain Research.

[3]  S. L. Dun,et al.  Infrequent co-localization of nitric oxide synthase and calcium binding proteins immunoreactivity in rat neocortical neurons , 1994, Brain Research.

[4]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[5]  T. Preuss Do Rats Have Prefrontal Cortex? The Rose-Woolsey-Akert Program Reconsidered , 1995, Journal of Cognitive Neuroscience.

[6]  C. Gerfen The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. , 1989, Science.

[7]  Alan Peters,et al.  GABA immunoreactive neurons in rat visual cortex , 1987, The Journal of comparative neurology.

[8]  D. Powell,et al.  Cingulothalamic and Prefrontal Control of Autonomic Function , 1993 .

[9]  K. Murakami,et al.  The Convergence of Axon Terminals from the Mediodorsal Thalamic Nucleus and Ventral Tegmental Area on Pyramidal Cells in Layer V of the Rat Prelimbic Cortex , 1996, The European journal of neuroscience.

[10]  T. Freund,et al.  Interneurons Containing Calretinin Are Specialized to Control Other Interneurons in the Rat Hippocampus , 1996, The Journal of Neuroscience.

[11]  H. Kimura,et al.  Histochemical mapping of nitric oxide synthase in the rat brain , 1992, Neuroscience.

[12]  A. D. Smith,et al.  A monosynaptic pathway from an identified vasomotor centre in the medial prefrontal cortex to an autonomic area in the thoracic spinal cord , 1993, Neuroscience.

[13]  A. Peters,et al.  The forms of non‐pyramidal neurons in the visual cortex of the rat , 1978, The Journal of comparative neurology.

[14]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[15]  H. Gundersen,et al.  Notes on the estimation of the numerical density of arbitrary profiles: the edge effect , 1977 .

[16]  J. Sandell,et al.  NADPH diaphorase histochemistry in the macaque striate cortex , 1986, The Journal of comparative neurology.

[17]  E. Audinat,et al.  Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents , 1995, The Journal of comparative neurology.

[18]  J. DeFelipe,et al.  GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex , 1994 .

[19]  D. Finch,et al.  Glutamatergic hippocampal formation projections to prefrontal cortex in the rat are regulated by GABAergic inhibition and show convergence with glutamatergic projections from the limbic thalamus , 1994, Hippocampus.

[20]  A. D. Smith,et al.  Amygdala input to medial prefrontal cortex (mPFC) in the rat: A light and electron microscope study , 1996, Brain Research.

[21]  S. Snyder,et al.  Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase , 1991, Neuron.

[22]  S. Sesack,et al.  Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA‐immunoreactive dendrites in rat and monkey cortex , 1995, The Journal of comparative neurology.

[23]  J. Rogers,et al.  Calretinin and calbindin-D28k in rat brain: Patterns of partial co-localization , 1992, Neuroscience.

[24]  H. Ojima,et al.  Electron microscopic evidence that axon terminals from the mediodorsal thalamic nucleus make direct synaptic contacts with callosal cells in the prelimbic cortex of the rat , 1995, Brain Research.

[25]  F. Crépel,et al.  Use‐dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. , 1990, The Journal of physiology.

[26]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[27]  E G Jones,et al.  Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Douglas,et al.  Exploring cortical microcircuits: a combined anatomical, physiological, and computational approach , 1992 .

[29]  D. Schmechel,et al.  Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory‐motor cortex , 1985, The Journal of comparative neurology.

[30]  P. Rakic,et al.  Three‐dimensional counting: An accurate and direct method to estimate numbers of cells in sectioned material , 1988, The Journal of comparative neurology.

[31]  J. Price,et al.  The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat , 1977, The Journal of comparative neurology.

[32]  D. Finch Hippocampal, Subicular, and Entorhinal Afferents and Synaptic Integration in Rodent Cingulate Cortex , 1993 .

[33]  A. Peters,et al.  Vasoactive intestinal polypeptide immunoreactive neurons in the primary visual cortex of the cat , 1987, Journal of neurocytology.

[34]  H. Groenewegen Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography , 1988, Neuroscience.

[35]  D. Powell,et al.  Neuronal Activity in the Medial Prefrontal Cortex during Pavlovian Eyeblink and Nictitating Membrane Conditioning , 1996, The Journal of Neuroscience.

[36]  E. Jones,et al.  Cajal-Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins , 1990, Journal of neurocytology.

[37]  M. Stewart,et al.  Distribution of neurons and glia in the visual cortex (area 17) of the adult albino rat: A quantitative description , 1987, Neuroscience.

[38]  R. Østerby,et al.  Optimizing sampling efficiency of stereological studies in biology: or ‘Do more less well!‘ , 1981, Journal of microscopy.

[39]  Paul Leonard Gabbott,et al.  The organisation of dendritic bundles in the prelimbic cortex (area 32) of the rat , 1996, Brain Research.

[40]  H. Kita,et al.  Amygdaloid projections to the frontal cortex and the striatum in the rat , 1990, The Journal of comparative neurology.

[41]  D. Powell,et al.  Involvement of subdivisions of the medial prefrontal cortex in learned cardiac adjustments in rabbits. , 1994, Behavioral neuroscience.

[42]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  J. DeFelipe,et al.  Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. , 1993, Cerebral cortex.

[44]  A. Peters,et al.  The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells , 1987, The Journal of comparative neurology.

[45]  A. Peters,et al.  The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. , 1970, The American journal of anatomy.

[46]  K Kishi,et al.  Thalamocortical synapses between axons from the mediodorsal thalamic nucleus and pyramidal cells in the prelimbic cortex of the rat , 1995, The Journal of comparative neurology.

[47]  J. DeFelipe,et al.  High‐Resolution Light and Electron Microscopic Immunocytochemistry of Colocalized GABA and Calbindin D‐28k in Somata and Double Bouquet Cell Axons of Monkey Somatosensory Cortex , 1992, The European journal of neuroscience.

[48]  C. Verney,et al.  Cajal‐Retzius neurons in human cerebral cortex at midgestation show immunoreactivity for neurofilament and calcium‐binding proteins , 1995, The Journal of comparative neurology.

[49]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  A. Peters,et al.  Chandelier cells in rat visual cortex , 1982, The Journal of comparative neurology.

[51]  T. Freund,et al.  GABAergic interneurons containing calbindin D28K or somatostatin are major targets of GABAergic basal forebrain afferents in the rat neocortex , 1991, The Journal of comparative neurology.

[52]  A. Cuello IBRO Handbook Series Methods in the Neurosciences, Vol 14 Immunohistochemistry, II , 1993 .

[53]  C. Beaulieu,et al.  Numerical data on neocortical neurons in adult rat, with special reference to the GABA population , 1993, Brain Research.

[54]  A. Peters Pyramidal Cell Modules in Rat Visual Cortex: Their Structure and Development , 1993 .

[55]  M. Cassell,et al.  Thalamic afferents of the rat infralimbic and lateral agranular cortices , 1991, Brain Research Bulletin.

[56]  C. Iadecola,et al.  Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? , 1993, Trends in Neurosciences.

[57]  T. Freund,et al.  gamma-Aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Victor A. F. Lamme,et al.  Heterotopic Cortical Afferents to the Medial Prefrontal Cortex in the Rat. A Combined Retrograde and Anterograde Tracer Study , 1992, The European journal of neuroscience.

[59]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[60]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[61]  M. Witter,et al.  Parvalbumin-immunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure , 1995, Journal of neurocytology.

[62]  Y. Kawaguchi,et al.  Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. , 1993, Journal of neurophysiology.

[63]  S. Vincent,et al.  Neuronal NADPH diaphorase is a nitric oxide synthase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[64]  M. A. Siegel,et al.  Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices , 1989, The Journal of comparative neurology.

[65]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[66]  R. Reep,et al.  Layer VII of rodent cerebral cortex , 1988, Neuroscience Letters.

[67]  J. Lund,et al.  Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin‐releasing factor‐and parvalbumin‐immunoreactive populations , 1990, The Journal of comparative neurology.

[68]  S. Sesack,et al.  Hippocampal afferents to the rat prefrontal cortex: Synaptic targets and relation to dopamine terminals , 1996, The Journal of comparative neurology.

[69]  A. Thierry,et al.  Motor and Cognitive Functions of the Prefrontal Cortex , 1994, Research and Perspectives in Neurosciences.

[70]  H. Groenewegen,et al.  Anatomical Relationships Between the Prefrontal Cortex and the Basal Ganglia in the Rat , 1994 .

[71]  Mark J. West,et al.  New stereological methods for counting neurons , 1993, Neurobiology of Aging.

[72]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[73]  Takahiro Matsumoto,et al.  A correlation between soluble brain nitric oxide synthase and NADPH-diaphorase activity is only seen after exposure of the tissue to fixative , 1993, Neuroscience Letters.

[74]  Paul Leonard Gabbott,et al.  Dendritic spine density of NADPH diaphorase reactive neurons in the medial prefrontal cortex (mPFC) of the rat , 1995, Brain Research.

[75]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  F. Benes,et al.  Postnatal maturation of GABA‐immunoreactive neurons of rat medial prefron tal cortex , 1995, The Journal of comparative neurology.

[77]  J. Bolam,et al.  Experimental Neuroanatomy: A Practical Approach , 1992 .

[78]  Paul Leonard Gabbott,et al.  Co-localisation of NADPH diaphorase activity and GABA immunoreactivity in local circuit neurones in the medial prefrontal cortex (mPFC) of the rat , 1995, Brain Research.

[79]  Alan Peters,et al.  A technique for estimating total spine numbers on golgi‐impregnated dendrites , 1979, The Journal of comparative neurology.

[80]  M. Zobundžija,et al.  Postnatal development of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) positive neurons in rat prefrontal cortex , 1994, Neuroscience Letters.

[81]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[82]  Françoise Condé,et al.  Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents , 1990, Brain Research Bulletin.

[83]  R. Miettinen,et al.  Coexistence of parvalbumin and GABA in nonpyramidal neurons of the rat entorhinal cortex , 1996, Brain Research.

[84]  G. Bertini,et al.  The chemical heterogeneity of cortical interneurons: Nitric oxide synthase vs. calbindin and parvalbumin immunoreactivity in the rat , 1996, Brain Research Bulletin.

[85]  T. Jay,et al.  NMDA Receptor‐dependent Long‐term Potentiation in the Hippocampal Afferent Fibre System to the Prefrontal Cortex in the Rat , 1995, The European journal of neuroscience.

[86]  R. Weinberg,et al.  Neurons in rat cerebral cortex that synthesize nitric oxide: NADPH diaphorase histochemistry, NOS immunocytochemistry, and colocalization with GABA , 1993, Neuroscience Letters.

[87]  L. Garey,et al.  Development of NADPH-diaphorase activity in the rat neocortex. , 1994, Brain research. Developmental brain research.

[88]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus , 1993 .

[89]  Françoise Condé,et al.  Local circuit neurons immunoreactive for calretinin, calbindin D‐28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology , 1994, The Journal of comparative neurology.

[90]  G Hung,et al.  Stereological methods. Vol. 1: Practical methods for biological morphometry By . Academic Press, New York/London, 1979. xvi + 415 pp., $57.50 , 1984 .

[91]  M. Akil,et al.  Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex , 1992, Experimental Neurology.

[92]  R. Coggeshall,et al.  Methods for determining numbers of cells and synapses: A case for more uniform standards of review , 1996, The Journal of comparative neurology.

[93]  E. Neafsey,et al.  Anterior Cingulate Cortex in Rodents: Connections, Visceral Control Functions, and Implications for Emotion , 1993 .

[94]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics , 1996, The Journal of comparative neurology.

[95]  S H Snyder,et al.  Nitric oxide in the nervous system. , 1995, Annual review of pharmacology and toxicology.

[96]  B. Vogt,et al.  Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29 , 1981, The Journal of comparative neurology.

[97]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[98]  E. G. Jones,et al.  Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity , 1989, Brain Research.

[99]  L. Bindman,et al.  The nitric oxide synthase inhibitor, N-monomethyl-L-arginine blocks induction of a long-term potentiation-like phenomenon in rat medial frontal cortical neurons in vitro. , 1993, Journal of neurophysiology.

[100]  T. Jay,et al.  Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris‐leucoagglutinin , 1991, The Journal of comparative neurology.

[101]  D. Riche,et al.  Developmental changes of NADPH-diaphorase neurons in the forebrain of neonatal and adult cat. , 1995, Brain research. Developmental brain research.

[102]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions , 1996, The Journal of comparative neurology.

[103]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook , 1993 .

[104]  O. Smith,et al.  Central neural integration for the control of autonomic responses associated with emotion. , 1984, Annual review of neuroscience.

[105]  P. Hof,et al.  Calcium-Binding Proteins Define Subpopulations of Interneurons in Cingulate Cortex , 1993 .

[106]  Alan Peters,et al.  A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex , 1981, The Journal of comparative neurology.

[107]  S. Vincent,et al.  Nitric oxide: A radical neurotransmitter in the central nervous system , 1994, Progress in Neurobiology.

[108]  M. Celio,et al.  Localization of calretinin in cells of layer I (Cajal-Retzius cells) of the developing cortex of the rat. , 1994, Brain research. Developmental brain research.