Geometric theory of nonlocal two-qubit operations

We study nonlocal two-qubit operations from a geometric perspective. By applying a Cartan decomposition to su(4), we find that the geometric structure of nonlocal gates is a 3-torus. We derive the invariants for local transformations, and connect these local invariants to the coordinates of the 3-torus. Since different points on the 3-torus may correspond to the same local equivalence class, we use the Weyl group theory to reduce the symmetry. We show that the local equivalence classes of two-qubit gates are in one-to-one correspondence with the points in a tetrahedron except on the base. We then study the properties of perfect entanglers, that is, the two-qubit operations that can generate maximally entangled states from some initially separable states. We provide criteria to determine whether a given two-qubit gate is a perfect entangler and establish a geometric description of perfect entanglers by making use of the tetrahedral representation of nonlocal gates. We find that exactly half the nonlocal gates are perfect entanglers. We also investigate the nonlocal operations generated by a given Hamiltonian. We first study the gates that can be directly generated by a Hamiltonian. Then we explicitly construct a quantum circuit that contains at most three nonlocal gates generated by a two-body interaction Hamiltonian, together with at most four local gates generated by single-qubit terms. We prove that such a quantum circuit can simulate any arbitrary two-qubit gate exactly, and hence it provides an efficient implementation of universal quantum computation and simulation.

[1]  K. N. Dollman,et al.  - 1 , 1743 .

[2]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[3]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[4]  Robert N. Cahn,et al.  Semi-Simple Lie Algebras and Their Representations , 1984 .

[5]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.

[8]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[12]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[13]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[14]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[15]  I. H. Deutsch,et al.  Quantum state control in optical lattices , 1998 .

[16]  Martin Rötteler,et al.  Computing local invariants of qubit systems , 1998 .

[17]  W. Hsiang,et al.  Lectures on Lie Groups , 1998 .

[18]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[19]  David P. DiVincenzo,et al.  Physical optimization of quantum error correction circuits , 1999, cond-mat/9905230.

[20]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[21]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[23]  Ralph V. Chamberlin,et al.  Mean-field cluster model for the critical behaviour of ferromagnets , 2000, Nature.

[24]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[25]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[26]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[27]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[28]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[29]  J. Cirac,et al.  Entanglement capabilities of nonlocal Hamiltonians. , 2000, Physical review letters.

[30]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[31]  J. Cirac,et al.  Nonlocal operations: Purification, storage, compression, tomography, and probabilistic implementation , 2000, quant-ph/0012148.

[32]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[33]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[34]  P. Zanardi Entanglement of Quantum Evolutions , 2001 .

[35]  Alexander Yu. Vlasov,et al.  Clifford algebras and universal sets of quantum gates , 2001 .

[36]  Charles H. Bennett,et al.  Optimal Simulation of Two-Qubit Hamiltonians Using General Local Operations , 2001, quant-ph/0107035.

[37]  J I Cirac,et al.  Catalysis in nonlocal quantum operations. , 2002, Physical review letters.

[38]  K. B. Whaley,et al.  Exact gate sequences for universal quantum computation using the XY interaction alone , 2001, quant-ph/0112014.

[39]  A. Vlasov Noncommutative tori and universal sets of nonbinary quantum gates , 2000, quant-ph/0012009.

[40]  J. Cirac,et al.  Storing quantum dynamics in quantum states: a stochastic programmable gate. , 2001, Physical review letters.

[41]  K. B. Whaley,et al.  Encoded universality for generalized anisotropic exchange Hamiltonians , 2002, quant-ph/0204016.

[42]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.