Can short- and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds?

The hyperpolarizabilities of five prototypical and four recently synthesized long-range charge-transfer (CT) organic compounds are calculated using short- and middle-range (SR and MR) hybrid functionals. These results are compared with data from MP2 and other DFT methods including GGAs, global hybrids, long-range corrected functionals (LC-DFT), and optimally tuned LC-DFT. Although it is commonly believed that the overestimation of hyperpolarizabilities associated with CT excitations by GGA and global hybrid functionals is the result of their wrong asymptotic exchange potential, and that LC-DFT heals this issue, we show here that SR and MR functionals yield results similar to those from LC-DFT. Hence, the long-range correction per se does not appear to be the key element in the well-known improved description of hyperpolarizabilities by LC-DFT. Rather, we argue that the inclusion of substantial amounts of Hartree-Fock exchange, which reduces the many-electron self-interaction error, is responsible for the relatively good results afforded by range separated hybrids. Additionally, we evaluate the effects of solvent and frequency on hyperpolarizabilities computed by SR and MR hybrids and compare these predictions with other DFT methods and available experimental data.

[1]  G. Scuseria,et al.  Can gap tuning schemes of long-range corrected hybrid functionals improve the description of hyperpolarizabilities? , 2015, The journal of physical chemistry. B.

[2]  G. Scuseria,et al.  Prediction of the linear and nonlinear optical properties of tetrahydronaphthalone derivatives via long-range corrected hybrid functionals , 2014 .

[3]  Kerry Garrett,et al.  Optimum Exchange for Calculation of Excitation Energies and Hyperpolarizabilities of Organic Electro-optic Chromophores. , 2014, Journal of chemical theory and computation.

[4]  Monika Srebro,et al.  Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties. , 2014, Accounts of chemical research.

[5]  L. Kronik,et al.  A self-interaction-free local hybrid functional: accurate binding energies vis-à-vis accurate ionization potentials from Kohn-Sham eigenvalues. , 2014, The Journal of chemical physics.

[6]  P. N. Day,et al.  Analysis of nonlinear optical properties in donor-acceptor materials. , 2014, The Journal of chemical physics.

[7]  G. Scuseria,et al.  A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment , 2014, Theoretical Chemistry Accounts.

[8]  Adèle D. Laurent,et al.  Strategies for Designing Diarylethenes as Efficient Nonlinear Optical Switches , 2014 .

[9]  Shih-I Lu,et al.  Assessment of the global and range-separated hybrids for computing the dynamic second-order hyperpolarizability of solution-phase organic molecules , 2014, Theoretical Chemistry Accounts.

[10]  G. Scuseria,et al.  Photochromic and nonlinear optical properties of fulgides: A density functional theory study , 2013 .

[11]  Matthias Scheffler,et al.  Hybrid density functional theory meets quasiparticle calculations: A consistent electronic structure approach , 2013 .

[12]  Haitao Sun,et al.  Influence of the delocalization error and applicability of optimal functional tuning in density functional calculations of nonlinear optical properties of organic donor-acceptor chromophores. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  G. Scuseria,et al.  Nonlinear optical properties of DPO and DMPO: a theoretical and computational study , 2013, Theoretical Chemistry Accounts.

[14]  Manthos G. Papadopoulos,et al.  Performance of density functional theory in computing nonresonant vibrational (hyper)polarizabilities , 2013, J. Comput. Chem..

[15]  G. Scuseria,et al.  Assessment of long-range corrected functionals for the prediction of non-linear optical properties of organic materials , 2013 .

[16]  Hiromi Nakai,et al.  Linearity condition for orbital energies in density functional theory (III): Benchmark of total energies , 2013, J. Comput. Chem..

[17]  Kotaro Fukuda,et al.  Challenging compounds for calculating hyperpolarizabilities: p-quinodimethane derivatives. , 2013, The journal of physical chemistry. A.

[18]  Mikolaj M. Mikolajczyk,et al.  Critical assessment of density functional theory for computing vibrational (hyper)polarizabilities , 2012 .

[19]  E. Tiekink,et al.  (2E)-2-(Furan-2-ylmethylidene)-2,3-dihydro-1H-inden-1-one , 2012, Acta crystallographica. Section E, Structure reports online.

[20]  E. Tiekink,et al.  (2E)-2-[(2H-1,3-Benzodioxol-5-yl)methylidene]-2,3-dihydro-1H-inden-1-one , 2012, Acta crystallographica. Section E, Structure reports online.

[21]  E. Tiekink,et al.  (2E)-2-(4-Methoxybenzylidene)-2,3-dihydro-1H-inden-1-one , 2012, Acta crystallographica. Section E, Structure reports online.

[22]  H. Nakai,et al.  Linearity condition for orbital energies in density functional theory (II): Application to global hybrid functionals , 2011 .

[23]  R. Baer,et al.  Communication: Tailoring the optical gap in light-harvesting molecules. , 2011, The Journal of chemical physics.

[24]  P. Barbara,et al.  Hole localization in molecular crystals from hybrid density functional theory. , 2011, Physical review letters.

[25]  B. Champagne,et al.  Electron correlation effects on the first hyperpolarizability of push-pull π-conjugated systems. , 2011, The Journal of chemical physics.

[26]  L. Slipchenko,et al.  Solvent effects on the electronic transitions of p-nitroaniline: a QM/EFP study. , 2011, The journal of physical chemistry. A.

[27]  Aggelos Avramopoulos,et al.  Electronic and vibrational contributions to first hyperpolarizability of donor-acceptor-substituted azobenzene. , 2010, The Journal of chemical physics.

[28]  R. Baer,et al.  Fundamental gaps in finite systems from eigenvalues of a generalized Kohn-Sham method. , 2010, Physical review letters.

[29]  R. Baer,et al.  Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. , 2009, The Journal of chemical physics.

[30]  A. Dvornikov,et al.  Two-photon three-dimensional optical storage memory. , 2009, The journal of physical chemistry. A.

[31]  Jochen Autschbach,et al.  Charge-transfer excitations and time-dependent density functional theory: problems and some proposed solutions. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  Giovanni Scalmani,et al.  Can short-range hybrids describe long-range-dependent properties? , 2009, The Journal of chemical physics.

[33]  Karol Kowalski,et al.  Parallel computation of coupled-cluster hyperpolarizabilities. , 2009, The Journal of chemical physics.

[34]  K. Ruud,et al.  Large two-photon absorption cross section: molecular tweezer as a new promising class of compounds for nonlinear optics. , 2009, Physical chemistry chemical physics : PCCP.

[35]  R. Baer,et al.  Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. , 2009, Journal of the American Chemical Society.

[36]  M G Papadopoulos,et al.  Linear and nonlinear optical properties of [60]fullerene derivatives. , 2009, The journal of physical chemistry. A.

[37]  G. Scuseria,et al.  Extensive TD-DFT investigation of the first electronic transition in substituted azobenzenes , 2008 .

[38]  G. Scuseria,et al.  Assessment of a Middle-Range Hybrid Functional. , 2008, Journal of chemical theory and computation.

[39]  A. Masunov,et al.  Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability. , 2008, The Journal of chemical physics.

[40]  Kimihiko Hirao,et al.  Nonlinear optical property calculations of polyynes with long-range corrected hybrid exchange-correlation functionals. , 2008, The Journal of chemical physics.

[41]  G. Scuseria,et al.  Revisiting the nonlinear optical properties of polybutatriene and polydiacetylene with density functional theory , 2008 .

[42]  Carlo Adamo,et al.  TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:  Conventional versus Long-Range Hybrids. , 2008, Journal of chemical theory and computation.

[43]  G. Scuseria,et al.  The importance of middle-range Hartree-Fock-type exchange for hybrid density functionals. , 2007, The Journal of chemical physics.

[44]  R. Bartlett,et al.  Exact-exchange density functional theory for hyperpolarizabilities. , 2007, The Journal of chemical physics.

[45]  G. Scuseria,et al.  Assessment of long-range corrected functionals performance for n-->pi* transitions in organic dyes. , 2007, The Journal of chemical physics.

[46]  Giovanni Scalmani,et al.  First hyperpolarizability of polymethineimine with long-range corrected functionals. , 2007, The Journal of chemical physics.

[47]  G. Scuseria,et al.  Tests of functionals for systems with fractional electron number. , 2007, The Journal of chemical physics.

[48]  Theodore Goodson,et al.  Excited-state deactivation of branched two-photon absorbing chromophores: a femtosecond transient absorption investigation. , 2007, The journal of physical chemistry. A.

[49]  D. Dudis,et al.  Quantum Mechanical Methods for Predicting Nonlinear Optical Properties , 2007 .

[50]  Seth R Marder,et al.  Organic nonlinear optical materials: where we have been and where we are going. , 2006, Chemical communications.

[51]  G. Scuseria,et al.  Assessment of a long-range corrected hybrid functional. , 2006, The Journal of chemical physics.

[52]  Ruth Pachter,et al.  Effects of conjugation in length and dimension on spectroscopic properties of fluorene-based chromophores from experiment and theory. , 2006, The journal of physical chemistry. A.

[53]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[54]  Benoît Champagne,et al.  Evaluation of alternative sum-over-states expressions for the first hyperpolarizability of push-pull pi-conjugated systems. , 2006, The Journal of chemical physics.

[55]  H. Reis,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited. , 2006, The Journal of chemical physics.

[56]  Jacopo Tomasi,et al.  Quantum Mechanical Continuum Solvation Models , 2005 .

[57]  L. Jensen,et al.  The first hyperpolarizability of p-nitroaniline in 1,4-dioxane: a quantum mechanical/molecular mechanics study. , 2005, The Journal of chemical physics.

[58]  Benoît Champagne,et al.  Density-functional theory (hyper)polarizabilities of push-pull pi-conjugated systems: treatment of exact exchange and role of correlation. , 2005, The Journal of chemical physics.

[59]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[60]  L. Szybisz,et al.  Hybrid Density Functional for Liquid 4He , 2005 .

[61]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[62]  He Tian,et al.  Recent Progresses on Diarylethene Based Photochromic Switches , 2004 .

[63]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[64]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[65]  David J. Tozer,et al.  Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory , 2003 .

[66]  B. Champagne,et al.  Zero-point vibrational averaging correction for second harmonic generation in para-nitroaniline , 2003 .

[67]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[68]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[69]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[70]  Satoshi Kawata,et al.  Three‐Dimensional Optical Data Storage Using Photochromic Materials , 2000 .

[71]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches , 2000 .

[72]  Denis Jacquemin,et al.  Assessment of Conventional Density Functional Schemes for Computing the Dipole Moment and (Hyper)polarizabilities of Push−Pull π-Conjugated Systems† , 2000 .

[73]  Benoît Champagne,et al.  Assessment of Conventional Density Functional Schemes for Computing the Polarizabilities and Hyperpolarizabilities of Conjugated Oligomers: An Ab Initio Investigation of Polyacetylene Chains , 1998 .

[74]  E. Donley,et al.  A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements , 1998 .

[75]  Notker Rösch,et al.  Comment on “Concerning the applicability of density functional methods to atomic and molecular negative ions” [J. Chem. Phys. 105, 862 (1996)] , 1997 .

[76]  Andreas Savin,et al.  Density functionals for the Yukawa electron-electron interaction , 1995 .

[77]  H. Nakanishi,et al.  Organic Nonlinear Optical Materials and Organic Microcrystals , 1994 .

[78]  J. R. Sambles,et al.  Organic Materials for Nonlinear Optics III , 1994 .

[79]  H. Ågren,et al.  Solvent induced polarizabilities and hyperpolarizabilities of para‐nitroaniline studied by reaction field linear response theory , 1994 .

[80]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[81]  David P. Shelton,et al.  A comparison of calculated and experimental hyperpolarizabilities for acetonitrile in gas and liquid phases , 1993 .

[82]  Michel Dupuis,et al.  Electron correlation effects in hyperpolarizabilities of p-nitroaniline , 1993 .

[83]  David P. Shelton,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities , 1992 .

[84]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences , 1991 .

[85]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives , 1991 .

[86]  Seth R. Marder,et al.  Materials for Nonlinear Optics Chemical Perspectives , 1991 .

[87]  P. Kebarle,et al.  Electron Affinities of Substituted Nitrobenzenes. , 1989 .

[88]  G. Ashwell,et al.  Organic Materials for Non-Linear Optics , 1989 .

[89]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[90]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[91]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[92]  P. Brown Kinetic studies in mass spectrometry—IX: Competing [M NO2] and [M NO] reactions in substituted nitrobenzenes. Approximate activation energies from ionization and appearance potentials , 1970 .

[93]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[94]  T. Koopmans,et al.  Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms , 1934 .