Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy

One of the fundamental hurdles in plasmonics is the trade-off between electromagnetic field confinement and the coupling efficiency with free-space light, a consequence of the large momentum mismatch between the excitation source and plasmonic modes. Acoustic plasmons in graphene, in particular, have an extreme level of field confinement, as well as an extreme momentum mismatch. Here, we show that this fundamental compromise can be overcome and demonstrate a graphene acoustic plasmon resonator with nearly perfect absorption (94%) of incident mid-infrared light. This high efficiency is achieved by utilizing a two-stage coupling scheme: free-space light coupled to conventional graphene plasmons, which then couple to ultraconfined acoustic plasmons. To realize this scheme, we transfer unpatterned large-area graphene onto template-stripped ultraflat metal ribbons. A monolithically integrated optical spacer and a reflector further boost the enhancement. We show that graphene acoustic plasmons allow ultrasensitive measurements of absorption bands and surface phonon modes in ångström-thick protein and SiO2 layers, respectively. Our acoustic plasmon resonator platform is scalable and can harness the ultimate level of light–matter interactions for potential applications including spectroscopy, sensing, metasurfaces and optoelectronics.The momentum mismatch between far-field light and acoustic graphene plasmons can be largely overcome by a two-stage coupling scheme for sensitive protein detection in sub-10-nm films.

[1]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[2]  Wenjuan Zhu,et al.  Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. , 2014, Nano letters.

[3]  R. Asgari,et al.  Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate , 2011 .

[4]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[5]  T. Low,et al.  Anisotropic Acoustic Plasmons in Black Phosphorus , 2017, 1712.10308.

[6]  Luis Martín-Moreno,et al.  Faraday rotation due to excitation of magnetoplasmons in graphene microribbons. , 2013, ACS nano.

[7]  W. Knap,et al.  Investigation of longitudinal‐optical phonon‐plasmon coupled modes in highly conducting bulk GaN , 1995 .

[8]  Kenji Watanabe,et al.  Thermoelectric detection and imaging of propagating graphene plasmons. , 2017, Nature materials.

[9]  D. Englund,et al.  Probing the ultimate plasmon confinement limits with a van der Waals heterostructure , 2018, Science.

[10]  Jae-Young Choi,et al.  Layer-by-layer doping of few-layer graphene film. , 2010, ACS nano.

[11]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[12]  F. Guinea,et al.  Mid-infrared plasmons in scaled graphene nanostructures , 2012, 1209.1984.

[13]  R. J. Bell,et al.  Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.

[14]  Zhenhua Ni,et al.  Broadband graphene polarizer , 2011 .

[15]  Kai Yan,et al.  Toward clean and crackless transfer of graphene. , 2011, ACS nano.

[16]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[17]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[18]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[19]  P. Avouris,et al.  Thermal infrared emission from biased graphene. , 2010, Nature nanotechnology.

[20]  Chao Zhang,et al.  Strong nonlinear optical response of graphene in the terahertz regime , 2009 .

[21]  T. Low,et al.  Anomalous reflection phase of graphene plasmons and its influence on resonators , 2014, 1406.7335.

[22]  Kenji Watanabe,et al.  Tuning quantum nonlocal effects in graphene plasmonics , 2017, Science.

[23]  J. Perruisseau-Carrier,et al.  Design of tunable biperiodic graphene metasurfaces , 2012, 1210.5611.

[24]  S. Goossens,et al.  Broadband image sensor array based on graphene–CMOS integration , 2017, Nature Photonics.

[25]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[26]  Stefan A. Maier,et al.  Strongly confined gap plasmon modes in graphene sandwiches and graphene-on-silicon , 2013 .

[27]  Harry A. Atwater,et al.  Tunable large resonant absorption in a midinfrared graphene Salisbury screen , 2014 .

[28]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[29]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[30]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[31]  Takashi Taniguchi,et al.  Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. , 2016, Nature nanotechnology.

[32]  S. Sarma,et al.  Exotic plasmon modes of double layer graphene , 2009, 0906.0771.

[33]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[34]  D. Lynch,et al.  Longitudinal-Optical-Phonon-Plasmon Coupling in GaAs , 1969 .

[35]  Xiaoxia Yang,et al.  Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons , 2016, Nature Communications.

[36]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[37]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.

[38]  Jan Kischkat,et al.  Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. , 2012, Applied optics.

[39]  R. Hillenbrand,et al.  Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy , 2017, 1805.00661.

[40]  Seyoon Kim,et al.  Electronically Tunable Perfect Absorption in Graphene. , 2017, Nano letters.

[41]  Mustafa Lotya,et al.  Broadband Nonlinear Optical Response of Graphene Dispersions , 2009 .

[42]  Timothy W Johnson,et al.  Monolithic integration of continuously tunable plasmonic nanostructures. , 2011, Nano letters.

[43]  Juan C. Garcia,et al.  Experimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces. , 2017, Nano letters.

[44]  Roland G. S. Goh,et al.  Giant broadband nonlinear optical absorption response in dispersed graphene single sheets , 2011 .

[45]  S. Das Sarma,et al.  Plasmon modes of spatially separated double-layer graphene , 2009 .

[46]  M. Lukin,et al.  Single-photon nonlinear optics with graphene plasmons. , 2013, Physical review letters.

[47]  Chang-Hua Liu,et al.  Graphene photodetectors with ultra-broadband and high responsivity at room temperature. , 2014, Nature nanotechnology.

[48]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[49]  F. J. Garcia-Vidal,et al.  Fields radiated by a nanoemitter in a graphene sheet , 2011, 1104.3558.

[50]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[51]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[52]  D. Katzer,et al.  Strong Coupling of Epsilon-Near-Zero Phonon Polaritons in Polar Dielectric Heterostructures. , 2018, Nano letters.

[53]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[54]  Zhipei Sun Optical modulators with two-dimensional layered materials , 2016, 2016 Progress in Electromagnetic Research Symposium (PIERS).

[55]  Vladimir Liberman,et al.  Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy , 2012, Optics express.

[56]  William E. Arter,et al.  Stable, efficient p-type doping of graphene by nitric acid , 2016 .

[57]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[58]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[59]  Phaedon Avouris,et al.  Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion and Focusing , 2017, 1712.04111.

[60]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.