Hyperfine anomaly in gold and magnetic moments of Iπ=11/2− gold isomers

Hyperfine-structure constants for the 6 s 2 S 1/2 and 6 p 2 P 1/2 atomic states of the I (cid:652) = 11/2 (cid:150) gold isomers Au m have been measured at CERN-ISOLDE, using the in-source laser resonance-ionization spectroscopy technique. From the measured hyperfine constants the differences between hyperfine anomalies for these atomic states have been deduced. These differential hyperfine anomaly values have been used to determine the -state hyperfine anomaly relative to the stable 197 Au with advanced atomic calculations. Magnetic dipole moments for the gold isomers in question have been deduced, taking into account the corresponding relative hyperfine-anomaly values. It has been shown that the commonly used prescription for the extraction of the magnetic moment values for the gold isotopes should be reconsidered. The magnetic moments calculated by this prescription have been reevaluated by properly accounting for the hyperfine anomaly, which is as large as 10% for several gold isotopes.

[1]  D. A. Fink,et al.  Change in structure between the I = 1/2 states in 181Tl and 177,179Au , 2018, Physics Letters B.

[2]  V. Manea,et al.  Charge radii and electromagnetic moments of At195–211 , 2018, Physical Review C.

[3]  Yu. A. Demidov,et al.  Calculation of Francium Hyperfine Anomaly , 2018, Atoms.

[4]  J. Billowes,et al.  The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED , 2018 .

[5]  T. Stora,et al.  The ISOLDE facility , 2017 .

[6]  Klaus Wendt,et al.  IOP : Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE , 2017 .

[7]  Yu. A. Demidov,et al.  CALCULATION OF THALLIUM HYPERFINE ANOMALY , 2017, 1703.10048.

[8]  I. I. Tupitsyn,et al.  CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory , 2015, Comput. Phys. Commun..

[9]  K. Flanagan,et al.  Collinear laser spectroscopy of atomic cadmium , 2015, 1507.03846.

[10]  V. Manea,et al.  ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer , 2013 .

[11]  Chang-Yi Lin,et al.  Absolute frequency measurement of the6P1/2→7S1/2transition in thallium , 2012 .

[12]  P. Molkanov,et al.  Hyperfine structure anomaly and magnetic moments of neutron deficient Tl isomers with I=9/2 , 2012 .

[13]  J. Persson Table of hyperfine anomaly in atomic systems , 2011, 1110.5991.

[14]  W. Johnson,et al.  Development of a configuration-interaction plus all-order method for atomic calculations , 2009, 0905.2578.

[15]  P. Kosuri,et al.  Development of a RILIS ionisation scheme for gold at ISOLDE, CERN , 2006 .

[16]  J. Persson Calculations of the Hyperfine Anomaly in the Lanthanides , 2006 .

[17]  M. Kozlov Precision Calculations of Atoms with Few Valence Electrons , 2003, physics/0306061.

[18]  W. Johnson,et al.  Parity nonconservation in thallium , 2001, physics/0105090.

[19]  M. Seliverstov,et al.  Mean square charge radii of the neutron-deficient rare-earth isotopes in the region of the nuclear shell N=82 measured by the laser ion source spectroscopy technique , 2000 .

[20]  V. Dzuba,et al.  Using effective operators in calculating the hyperfine structure of atoms , 1998 .

[21]  J. Persson Extraction of hyperfine anomalies without precise values of the nuclear magnetic dipole moment , 1998 .

[22]  J.K.P. Lee,et al.  Nuclear moments and deformation change in 184Aug,m from laser spectroscopy , 1997 .

[23]  Kozlov,et al.  Combination of the many-body perturbation theory with the configuration-interaction method. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[24]  Mårtensson-Pendrill Magnetic moment distributions in Tl nuclei. , 1995, Physical review letters.

[25]  R. Neugart,et al.  Quadrupole moments and nuclear shapes of neutron-deficient gold isotopes , 1994 .

[26]  H. Kluge,et al.  Chemically selective laser ion-source for the CERN-ISOLDE on-line mass separator facility , 1993 .

[27]  G. Alkhazov,et al.  Nuclear deformation of holmium isotopes , 1989 .

[28]  J. Wood,et al.  Nuclear shape transition in light gold isotopes , 1989 .

[29]  S. Becker,et al.  Observation of strongly deformed ground-state configurations in184Au and183Au by laser spectroscopy , 1988 .

[30]  Wouters,et al.  Internal field distribution on Au in the Au-Fe system in the limit of very small concentration. , 1986, Physical review. B, Condensed matter.

[31]  S. Büttgenbach Magnetic hyperfine anomalies , 1984 .

[32]  L. Vanneste,et al.  On-line nuclear orientation of Au isotopes at KOOL , 1984 .

[33]  E. Zech,et al.  Nuclear magnetic moment of the isomer 193mAu , 1983 .

[34]  R. G. Lanier,et al.  g factor of the J/sup. pi. / = 25/2/sup +/ isomer in /sup 205/Tl and the anomalous orbital magnetism of the proton , 1982 .

[35]  E. Zech,et al.  g factor of the 30. 6 sec 11/2/sup -/ isomer /sup 195/Au/sup m/ , 1981 .

[36]  W. Witthuhn,et al.  Magnetic moments of the isomeric 112− states in 145,147,149Eu , 1980 .

[37]  I. Ragnarsson,et al.  Nuclear ground-state spin of185Au and magnetic moments of 187, 188Au: Further evidence for coexisting nuclear shapes in this mass region , 1980 .

[38]  P. D. Johnston,et al.  The quadrupole interaction and orbital magnetic hyperfine field of Au nuclei inFe by NMR/ON , 1976 .

[39]  A. Arima,et al.  Magnetic hyperfine structure of muonic and electronic atoms , 1975 .

[40]  K. Krane,et al.  Nonalignment of the magnetic hyperfine field of Ir in Fe , 1974 .

[41]  M. Lombardi,et al.  Distribution of nuclear magnetization in mercury isotopes , 1973 .

[42]  H. Stroke,et al.  EFFECT OF A DIFFUSE NUCLEAR CHARGE DISTRIBUTION ON THE HYPERFINE-STRUCTURE INTERACTION. , 1972 .

[43]  T. Butz,et al.  Measurements of NMR on oriented 192Ir and 191Irm in Ni and Fe host lattices , 1971 .

[44]  H. Shugart,et al.  Hyperfine Structure of Ga 67 and Ga 72 , 1968 .

[45]  W. B. Ewbank,et al.  HYPERFINE-STRUCTURE SEPARATIONS AND MAGNETIC MOMENTS OF GOLD-194, 195, AND 196 , 1965 .

[46]  E. B. Baker,et al.  Frequency‐Swept and Proton‐Stabilized NMR Spectrometer for all Nuclei Using a Frequency Synthesizer , 1963 .

[47]  R. Blin-stoyle,et al.  Configuration Mixing and the Effects of Distributed Nuclear Magnetization on Hyperfine Structure in Odd- A Nuclei , 1961 .

[48]  J. Eisinger,et al.  Effects of the Distribution of Nuclear Magnetization on Hyperfine Structure , 1958 .

[49]  A. Prodell,et al.  HFS SEPARATIONS AND HFS ANOMALIES IN THE $sup 2$P/1 OVER 2/ STATE OF Ga$sup 69$, Ga$sup 71$, Tl$sup 203$, AND Tl$sup 20$$sup 6$ , 1956 .

[50]  C. Schwartz HYPERFINE STRUCTURE ANOMALY IN ATOMIC P-STATE , 1955 .

[51]  V. Weisskopf,et al.  The Influence of Nuclear Structure on the Hyperfine Structure of Heavy Elements , 1950 .

[52]  A. Schawlow,et al.  Electron-Nuclear Potential Fields from Hyperfine Structure , 1949 .

[53]  J. E. Rosenthal,et al.  The Isotope Shift in Hyperfine Structure , 1932 .