Securing Unmanned Aerial Vehicular Networks Using Modified Elliptic Curve Cryptography

Unmanned Aerial Vehicles (UAVs) in Flying Ad-Hoc Networks (FANET) are increasing rapidly and being employed for many civilian and military applications. It is crucial to authenticate UAVs' identities before they begin to communicate with each other. However, the traditional authentication methods based on a dynamic key or username/password encompass a low secure ability. The other certification method needs a large session key that cannot meet the requirement of lightweight authentication in the FANET. In this paper, we propose a modified Elliptic Curve Cryptography (ECC) based lightweight identity authentication method which has two main steps: i) the Certificate Authority (CA) which maps UAV's unique identifier information with cryptographic keys using the ECC algorithm; ii) detection of malicious UAV (MUAV) using received periodic status information of UAVs. These steps make sure no malicious UAVs present in the FANET. We compared the proposed approach with a traditional authentication method in FANET and noticed that the proposed approach provides a shorter key and lower computing utilization. Considering the security, this approach addresses the malicious UAV attack issues that can ensure the UAV identity authentication secure, and only legitimate UAVs can participate in communications. We evaluate the performance of our proposed approach using numerical results and found that our approach outperforms the other related approaches.