Continuous-time random-walk approach to normal and anomalous reaction-diffusion processes.

We study the dynamics of a radioactive species flowing through a porous material, within the continuous-time random-walk (CTRW) approach to the modeling of stochastic transport processes. Emphasis is given to the case where radioactive decay is coupled to anomalous diffusion in locally heterogeneous media, such as porous sediments or fractured rocks. In this framework, we derive the distribution of the number of jumps each particle can perform before a decay event. On the basis of the obtained results, we compute the moments of the cumulative particle distribution, which can be then used to quantify the overall displacement and spread of the contaminant species.

[1]  J. Klafter,et al.  Anomalous diffusion spreads its wings , 2005 .

[2]  M. Dentz,et al.  Modeling non‐Fickian transport in geological formations as a continuous time random walk , 2006 .

[3]  I. S. Gradshteyn Table of Integrals, Series and Products, Corrected and Enlarged Edition , 1980 .

[4]  Disorder-induced anomalous kinetics in the A+A-->0 reaction , 1997, cond-mat/9707116.

[5]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[6]  M. Sahini,et al.  Applications of Percolation Theory , 2023, Applied Mathematical Sciences.

[7]  Rainer Kimmich,et al.  Strange kinetics, porous media, and NMR , 2002 .

[8]  Brian Berkowitz,et al.  Numerical simulation of non‐Fickian transport in geological formations with multiple‐scale heterogeneities , 2002 .

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  I. Sokolov,et al.  Mesoscopic description of reactions for anomalous diffusion: a case study , 2006, cond-mat/0608117.

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  B. Berkowitz,et al.  Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. , 2003, Journal of contaminant hydrology.

[13]  Brian Berkowitz,et al.  ANOMALOUS TRANSPORT IN RANDOM FRACTURE NETWORKS , 1997 .

[14]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[15]  Brian Berkowitz,et al.  Morphogen gradient formation in a complex environment: an anomalous diffusion model. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Vicenç Méndez,et al.  Continuous-time random walks and traveling fronts. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Brian Berkowitz,et al.  On Characterization of Anomalous Dispersion in Porous and Fractured Media , 1995 .

[18]  M. Marseguerra,et al.  The Monte Carlo and fractional kinetics approaches to the underground anomalous subdiffusion of contaminants , 2006 .

[19]  G. Weiss Aspects and Applications of the Random Walk , 1994 .

[20]  Gedeon Dagan,et al.  Subsurface flow and transport : a stochastic approach , 1997 .

[21]  S L Wearne,et al.  Turing pattern formation in fractional activator-inhibitor systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  M. Marseguerra,et al.  Normal and anomalous transport across an interface: Monte Carlo and analytical approach , 2006 .

[23]  B Berkowitz,et al.  Application of Continuous Time Random Walk Theory to Tracer Test Measurements in Fractured and Heterogeneous Porous Media , 2001, Ground water.

[24]  Martin J. Blunt,et al.  Pore‐scale modeling and continuous time random walk analysis of dispersion in porous media , 2006 .

[25]  B. Berkowitz,et al.  Anomalous Transport in “Classical” Soil and Sand Columns , 2004, Soil Science Society of America Journal.

[26]  M. Shlesinger Asymptotic solutions of continuous-time random walks , 1974 .

[27]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[28]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[29]  M. Dentz,et al.  Transport behavior of a passive solute in continuous time random walks and multirate mass transfer , 2003 .

[30]  B. Berkowitz,et al.  Spatial behavior of anomalous transport. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[32]  Harold H. Sanguinetti HYDROLOGY , 1923 .

[33]  I M Sokolov,et al.  Reaction-subdiffusion equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  A. I. Shushin Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach , 2005 .

[36]  Brian Berkowitz,et al.  Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .

[37]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[38]  EFFECT OF STATIC DISORDER AND REACTANT SEGREGATION ON THE A + B 0 REACTION , 1997, cond-mat/9707254.