The Role of Repeat Administration of Adventitial Delivery of Lentivirus-shRNA-Vegf-A in Arteriovenous Fistula to Prevent Venous Stenosis Formation.

[1]  D. Mukhopadhyay,et al.  Tracking and Therapeutic Value of Human Adipose Tissue-derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. , 2016, Radiology.

[2]  W. Kong,et al.  ADAMTS-7 promotes vascular smooth muscle cells proliferation in vitro and in vivo , 2015, Science China Life Sciences.

[3]  R. Simari,et al.  Vascular wall progenitor cells in health and disease. , 2015, Circulation research.

[4]  J. Hamming,et al.  Elastin is a key regulator of outward remodeling in arteriovenous fistulas. , 2015, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[5]  L. Arend,et al.  Proliferation Patterns in a Pig Model of AV Fistula Stenosis: Can we Translate Biology into Novel Therapies? , 2014, Seminars in dialysis.

[6]  D. Mukhopadhyay,et al.  The Role of Iex-1 in the Pathogenesis of Venous Neointimal Hyperplasia Associated with Hemodialysis Arteriovenous Fistula , 2014, PloS one.

[7]  D. Mukhopadhyay,et al.  Adventitial Delivery of Lentivirus-shRNA-ADAMTS-1 Reduces Venous Stenosis Formation in Arteriovenous Fistula , 2014, PloS one.

[8]  Andrea Remuzzi,et al.  Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. , 2013, Clinical journal of the American Society of Nephrology : CJASN.

[9]  Timmy Lee Novel paradigms for dialysis vascular access: downstream vascular biology--is there a final common pathway? , 2013, Clinical journal of the American Society of Nephrology : CJASN.

[10]  D. Mukhopadhyay,et al.  Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation , 2013, Kidney international.

[11]  D. Mukhopadhyay,et al.  Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model , 2013, Kidney international.

[12]  S. Misra,et al.  Increased expression of HIF-1alpha, VEGF-A and its receptors, MMP-2, TIMP-1, and ADAMTS-1 at the venous stenosis of arteriovenous fistula in a mouse model with renal insufficiency. , 2010, Journal of vascular and interventional radiology : JVIR.

[13]  C. Glass,et al.  Efficient Regulation of VEGF Expression by Promoter-Targeted Lentiviral shRNAs Based on Epigenetic Mechanism: A Novel Example of Epigenetherapy , 2009, Circulation research.

[14]  S. Misra,et al.  The mouse arteriovenous fistula model. , 2009, Journal of vascular and interventional radiology : JVIR.

[15]  A. M. McGuire,et al.  Adventitial transplantation of blood outgrowth endothelial cells in porcine haemodialysis grafts alleviates hypoxia and decreases neointimal proliferation through a matrix metalloproteinase-9-mediated pathway—a pilot study , 2008, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[16]  J. Grande,et al.  Genetic deficiency of heme oxygenase-1 impairs functionality and form of an arteriovenous fistula in the mouse. , 2008, Kidney international.

[17]  James F Glockner,et al.  Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts. , 2008, American journal of physiology. Heart and circulatory physiology.

[18]  D. Blumenthal,et al.  Cellular and morphological changes during neointimal hyperplasia development in a porcine arteriovenous graft model. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[19]  S. Heffelfinger,et al.  Perivascular paclitaxel wraps block arteriovenous graft stenosis in a pig model. , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[20]  Y. Castier,et al.  Characterization of neointima lesions associated with arteriovenous fistulas in a mouse model. , 2006, Kidney international.

[21]  Prabir Roy-Chaudhury,et al.  Hemodialysis vascular access dysfunction: a cellular and molecular viewpoint. , 2006, Journal of the American Society of Nephrology : JASN.

[22]  D. Mukhopadhyay,et al.  Adventitial remodeling with increased matrix metalloproteinase-2 activity in a porcine arteriovenous polytetrafluoroethylene grafts. , 2005, Kidney international.

[23]  T. Stijnen,et al.  Radiocephalic wrist arteriovenous fistula for hemodialysis: meta-analysis indicates a high primary failure rate. , 2004, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[24]  N. Ferrara,et al.  Angiogenesis-Dependent and Independent Phases of Intimal Hyperplasia , 2004, Circulation.

[25]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[26]  S. Heffelfinger,et al.  Venous neointimal hyperplasia in polytetrafluoroethylene dialysis grafts. , 2001, Kidney international.

[27]  M Aguet,et al.  VEGF is required for growth and survival in neonatal mice. , 1999, Development.

[28]  J. Grande,et al.  MCP-1 contributes to arteriovenous fistula failure. , 2011, Journal of the American Society of Nephrology : JASN.