Self-confirming price-prediction strategies for simultaneous one-shot auctions

Bidding in simultaneous auctions is challenging because an agent's value for a good in one auction may depend on the uncertain outcome of other auctions: the so-called exposure problem. Given the gap in understanding of general simultaneous auction games, previous works have tackled this problem with heuristic strategies that employ probabilistic price predictions. We define a concept of self-confirming prices, and show that within an independent private value model, Bayes-Nash equilibrium can be fully characterized as a profile of optimal price prediction strategies with self-confirming predictions. We exhibit practical procedures to compute approximately optimal bids given a probabilistic price prediction, and near self-confirming price predictions given a price-prediction strategy. An extensive empirical game-theoretic analysis demonstrates that self-confirming price prediction strategies are effective in simultaneous auction games with both complementary and substitutable preference structures.

[1]  Michael P. Wellman,et al.  The Structure of Signals: Causal Interdependence Models for Games of Incomplete Information , 2011, UAI.

[2]  Michael P. Wellman,et al.  Self-Confirming Price Prediction for Bidding in Simultaneous Ascending Auctions , 2005, UAI.

[3]  Yang Cai,et al.  Simultaneous bayesian auctions and computational complexity , 2014, EC.

[4]  E. Maasland,et al.  Auction Theory , 2021, Springer Texts in Business and Economics.

[5]  Robert J. Weber,et al.  An Example of a Multi-Object Auction Game , 1979 .

[6]  Michael P. Wellman,et al.  Autonomous bidding agents - strategies and lessons from the trading agent competition , 2007 .

[7]  Amy Greenwald,et al.  Approximating Equilibria in Sequential Auctions with Incomplete Information and Multi-Unit Demand , 2012, NIPS.

[8]  Michael P. Wellman,et al.  Methods for empirical game-theoretic analysis (extended abstract) , 2006 .

[9]  Michael P. Wellman,et al.  Exploring bidding strategies for market-based scheduling , 2003, EC '03.

[10]  Michael P. Wellman Methods for Empirical Game-Theoretic Analysis , 2006, AAAI.

[11]  Michael P. Wellman,et al.  Self-Confirming Price Prediction for Bidding in Simultaneous Second-Price Sealed-Bid Auctions , 2011 .

[12]  Michael P. Wellman,et al.  EGTAOnline: An Experiment Manager for Simulation-Based Game Studies , 2012, MABS.

[13]  Michael P. Wellman,et al.  Accounting for price dependencies in simultaneous sealed-bid auctions , 2012, EC '13.

[14]  Amy Greenwald,et al.  Bidding under Uncertainty: Theory and Experiments , 2004, UAI.

[15]  Amy Greenwald,et al.  Bid determination in simultaneous actions an agent architecture , 2001, EC '01.

[16]  Michael P. Wellman Trading Agents , 2011, Trading Agents.

[17]  Michael P. Wellman,et al.  Empirical game-theoretic analysis of the TAC Supply Chain game , 2007, AAMAS '07.

[18]  Victor Naroditskiy,et al.  Select Problems at the Intersection of Computer Science and Economics , 2010 .

[19]  Michal Feldman,et al.  Simultaneous auctions are (almost) efficient , 2012, STOC '13.

[20]  R. Rosenthal,et al.  Simultaneous Auctions with Synergies , 1996 .

[21]  Vasilis Syrgkanis,et al.  Bayesian Games and the Smoothness Framework , 2012, ArXiv.

[22]  M. P. Wellman,et al.  Price Prediction in a Trading Agent Competition , 2004, J. Artif. Intell. Res..

[23]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[24]  A. Rubinstein,et al.  Rationalizable Conjectural Equilibrium: Between Nash and Rationalizability , 1994 .

[25]  P. Cramton Simultaneous Ascending Auctions , 2004 .

[26]  Annamária Kovács,et al.  Bayesian Combinatorial Auctions , 2008, ICALP.

[27]  Michael Peters,et al.  Internet Auctions with Many Traders , 2002, J. Econ. Theory.

[28]  David A. McAllester,et al.  Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions , 2003, J. Artif. Intell. Res..

[29]  Renato Paes Leme,et al.  The dining bidder problem: à la russe et à la française , 2012, SECO.

[30]  Balázs Szentes,et al.  Three-object two-bidder simultaneous auctions: chopsticks and tetrahedra , 2003, Games Econ. Behav..

[31]  Michael P. Wellman,et al.  Practical Strategic Reasoning with Applications in Market Games , 2010 .

[32]  Paul Klemperer,et al.  Auctions: Theory and Practice , 2004 .

[33]  Michael P. Wellman,et al.  Bidding Strategies for Simultaneous Ascending Auctions , 2008 .

[34]  Victor Naroditskiy,et al.  Bidding Heuristics for Simultaneous Auctions: Lessons from TAC Travel , 2008, AMEC/TADA.

[35]  Michel Gendreau,et al.  Combinatorial auctions , 2007, Ann. Oper. Res..

[36]  Nicholas R. Jennings,et al.  Computing pure Bayesian-Nash equilibria in games with finite actions and continuous types , 2013, Artif. Intell..

[37]  Michael P. Wellman,et al.  Price Prediction Strategies for Market-Based Scheduling , 2004, ICAPS.

[38]  Paul R. Milgrom,et al.  Putting Auction Theory to Work: The Simultaneous Ascending Auction , 1999, Journal of Political Economy.

[39]  Victor Naroditskiy,et al.  RoxyBot-06: Stochastic Prediction and Optimization in TAC Travel , 2009, J. Artif. Intell. Res..

[40]  Robert W. Rosenthal,et al.  Simultaneous Auctions with Synergies and Common Values , 1996 .