Low-Earth Orbit Determination from Gravity Gradient Measurements

Abstract An innovative orbit determination method which makes use of gravity gradients for Low-Earth-Orbiting satellites is proposed. The measurement principle of gravity gradiometry is briefly reviewed and the sources of measurement error are analyzed. An adaptive hybrid least squares batch filter based on linearization of the orbital equation and unscented transformation of the measurement equation is developed to estimate the orbital states and the measurement biases. The algorithm is tested with the actual flight data from the European Space Agency’s Gravity field and steady-state Ocean Circulation Explorer (GOCE). The orbit determination results are compared with the GPS-derived orbits. The radial and cross-track position errors are on the order of tens of meters, whereas the along-track position error is over one order of magnitude larger. The gravity gradient based orbit determination method is promising for potential use in GPS-denied spacecraft navigation.

[1]  G. Renzetti,et al.  Satellite Orbital Precessions Caused by the Octupolar Mass Moment of a Non-Spherical Body Arbitrarily Oriented in Space , 2013 .

[2]  Rune Floberghagen,et al.  GOCE level 1b data processing , 2011 .

[3]  Christophe Macabiau,et al.  Test of GOCE EGG Data for Spacecraft Positioning , 2014 .

[4]  Lorenzo Iorio,et al.  Perturbed stellar motions around the rotating black hole in Sgr A * for a generic orientation of its spin axis , 2011, 1107.2916.

[5]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[6]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[7]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[8]  Justin Arthur Richeson,et al.  Gravity Gradiometer Aided Inertial Navigation Within Non-GNSS Environments , 2008 .

[9]  Oliver Montenbruck,et al.  Reduced dynamic orbit determination using GPS code and carrier measurements , 2005 .

[10]  Julie K. Thienel,et al.  RESULTS OF THE MAGNETOMETER NAVIGATION (MAGNAV) INFLIGHT EXPERIMENT , 2004 .

[11]  Albert Jircitano,et al.  Inertial Navigation Performance Improvement Using Gravity Gradient Matching Techniques , 1976 .

[12]  C. Affleck,et al.  Passive gravity gradiometer navigation system , 1990, IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences.

[13]  Pei Chen,et al.  Gravity Gradient Tensor Eigendecomposition for Spacecraft Positioning , 2015, ArXiv.

[14]  R Jastrow,et al.  Satellite Orbits. , 1961, Science.

[15]  Calvin Klatt,et al.  Geodesy ∗ , 2014, Encyclopedia of Remote Sensing.

[16]  R. Rummel,et al.  GOCE gravitational gradiometry , 2011 .

[17]  G. Renzetti,et al.  Satellite orbital precessions caused by the first odd zonal J3 multipole of a non-spherical body arbitrarily oriented in space , 2014 .

[18]  Thomas J. Meyer,et al.  Gravity gradiometer systems – advances and challenges , 2009 .

[19]  Rune Floberghagen,et al.  Upgrade of the GOCE Level 1b gradiometer processor , 2012 .

[20]  A. Gelb,et al.  Geodetic and geophysical uncertainties - Fundamental limitations on terrestrial inertial navigation , 1968 .

[21]  George M. Siouris,et al.  Gravity modeling in aerospace applications , 2009 .

[22]  C. Readings,et al.  Gravity field and steady-state ocean circulation mission , 1996 .

[23]  Christopher Jekeli,et al.  Precision free-inertial navigation with gravity compensation by an onboard gradiometer , 2006 .

[24]  Jyh-Ching Juang,et al.  Design and verification of a magnetometer-based orbit determination and sensor calibration algorithm , 2012 .

[25]  Lorenzo Iorio,et al.  Novel considerations about the error budget of the LAGEOS-based tests of frame-dragging with GRACE geopotential models , 2013, 1307.0753.

[26]  John C. Ries,et al.  Evaluation of the GGM05 Mean Earth Gravity models , 2015 .

[27]  Lorenzo Iorio A Critical Analysis of a Recent Test of the Lense–Thirring Effect with the LAGEOS Satellites , 2005 .

[28]  G. W. Davis,et al.  The Joint Gravity Model 3 , 1996 .

[29]  Pavel Novák,et al.  Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance , 2015, Journal of Geodesy.

[30]  David M. Gleason,et al.  Passive Airborne Navigation and Terrain Avoidance Using Gravity Gradiometry , 1995 .

[31]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[32]  Johnny A. Johannessen The four candidate Earth Explorer core missions. Report for mission selection. 1. Gravity Field and Steady-state Ocean Circulation Mission. , 1999 .

[33]  Kyu-Hong Choi,et al.  Satellite orbit determination using a batch filter based on the unscented transformation , 2010 .

[34]  Rolf König,et al.  EIGEN-6C4 - The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse , 2011 .

[35]  J. V. Breakwell,et al.  Real-Time Gravity Gradiometer Utilization to Improve INS Accuracy , 1982 .

[36]  U. Hugentobler,et al.  GPS-derived orbits for the GOCE satellite , 2011 .

[37]  Claudio Paris,et al.  Fundamental Physics and General Relativity with the LARES and LAGEOS satellites , 2013, 1309.1699.

[38]  Sergei M. Kopeikin,et al.  Towards an exact relativistic theory of Earth's geoid undulation , 2015 .

[39]  Johannes Bouman,et al.  Preprocessing of gravity gradients at the GOCE high-level processing facility , 2009 .

[40]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[41]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[42]  Mark L. Psiaki,et al.  Ground Tests of Magnetometer- Based Autonomous Navigation (MAGNAV) for Low-Earth-Orbiting Spacecraft , 1993 .

[43]  Ho Jung Paik,et al.  Effects of satellite positioning errors and Earth’s multipole moments in the detection of the gravitomagnetic field with an orbiting gravity gradiometer , 2014 .

[44]  L. P. Pellinen Physical Geodesy , 1972 .

[45]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[46]  Junhua Xiang,et al.  Particle filter using a new resampling approach applied to LEO satellite autonomous orbit determination with a magnetometer , 2012 .

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Sergei M. Kopeikin,et al.  Relativistic Celestial Mechanics of the Solar System , 2011 .

[49]  Ho Jung Paik Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer: principle and experimental considerations , 2008 .